Mox/cM6x Development Package
Manual

The M6x/cM6X Deve opment Package Manual was prepared by the technical staff of Innovative
Integration, February 2000.

For further assigance contact:
Innovative Integration

5785 Lindero Canyon Road
Westlake Village, California 91362
PH:(818) 865-6150

FAX:(818) 879-1770

emai |:techsprt @i nnovative-dsp.com
Webs te www.innovative-dsp.com

Thisdocument is copyright 1997 by Innovative Integration. All rights are reserved.

V SS\M 62\documents\Hw-Sw Manual\M 62manual .book

#51070 rev—1.01

Devd opment Package Manual

CHAPTER 1

CHAPTER 2

CHAPTER 3

CHAPTER 4

Introduction 11

A NoteaboutthisManual i 12
Installationt 13
Host Hardware Requirements. 13
Software Installation. 14
Begin Installation i 14
Installation INStructions 15
JTAG Debugger Driver Installation, 22
Code Composer SudioInstallation, 29
HaspKey Installation e 31
EndOf Installationo 31
Hardware Installation i 32
JTAG Emulator Hardwarelnstallation.ooue. 32
DSPBoardInstallation.oo i 34
Testing the Development Package Instdlation. 35
Configuring the Applets within the Development Package.............. 35
Running the "JTAG Diagnostic" Utility 36
Running an Example Programusing TERMINAL 37
Running the " SCope”o 39
Testing the Code Composer Debuggert 39
Troubleshooting Installation Problems. 41
Most Commonly Asked QUESLIONS. 41
Code Composer Studio Troubleshooting.cooovvinieeenn.. 45
Verify Environment Variables 48
Multiple Board SUPPOItot 49
Uninstall ProCesS.o v e 51
Windows 95/Windows 98 Uningtallation. 51
WindowsNT Uningtallation 54
Integrated Development Environment 95
The Texas Instruments C Compiler Toolset 55
C Compiler TOOISEt USAgE . ..o oot 56
Code Composer SUAIOo v 56
BAitOr. . .o 56
DEDUGOES . . . o 56
Support Applets. 57
The Terminal Emulator. s 57
The COFF FileDownloader 64
The COFF FileDump Utilityt 66

M62 Deve opment Package Manual

CHAPTER 5

CHAPTER 6

CHAPTER 7

CHAPTER 8

CHAPTER 9

CHAPTER 10

Developing TargetCode 69

INtroduCtion 69
Components of Target Code(.c,.asm,.cmd)., 70
Edit-Compile-Test Cycle using Code Composer Studio 70
A Simple Code Composer StudioProject 70
Build Options (M62, Q62, SBC62Boards)vvvvnninneenn 72
Build Options (M67, Q67, SBC67Boards)ovvininnnnnn 75
Automatic makefilecreation ... 7
RebuildingaProject 7
Runningthe Target Executable o i, 7
Anatomy of aTarget Program, 78
Useof LibraryCode 80
Compiling/Assembling/Linking Outside Code Composer Studio 80
The Next Step: Developing CustomCode. 81
DevelopingHostCode. 83
DynamicLink Library i i 83
Sample Host Programs e 84
The XRPT Example. 87
Creating Target Software. 89
CCodeDeavelopment.o o 89
C oMl Er 89
ClLibraryReference 90
M62 Zuma Toolset Libraries. 90
M62 Hardware Interactiont 93
Digital InpUt/OULPUL 94
107> £ P 96
Example Target ProgramsfortheM62 100
HELLO .. 100
TEST oot 100
Target DSP Peripheral Libraries............. 103
Host DLL Reference. 111
DOS Environment Requirements. 115

M62 Devel opment Package Manual

CHAPTER 11

CHAPTER 12

M62/cM62 Hardware. 117

M62/cM62 Hardware FUNCtions.ccvvnenennann.. 117
Memory Map . ..o 118
M62 Hardware Initialization Requirements. 119
External Memoryo e 120
MB2 OMNIBUS e 120
M62 OMNIBUS Memory Mapping.o vvvvee e e 121
OMNIBUSPOWEY e e et 122
FIFOPOrt I/OEBXpansion. 123
Transmitting and Receiving FIFOPortData. 124
Monitoring FIFO Status oi i i 124
FIFOPOIt RESEL. . . oottt e e 126
FIFOPort Enable.t e 126
Controlling the FIFOPort Programmable Almost-full Flag 126
Timer I/Oandthe FIFOPOrt 127
Designing External Hardware for use withthe FIFOPort 127
FIFOPOIt TImMiNG. . .ottt et e ittt 128
Serial POrtS . ..o 129
11007 £ 129
ON-Chip TIMENS . oot e e 130
16-Dit TIMES. . 130
AD9850 Direct Digital Synthesizer. ..., 131
Digital [/O. . ..o 132
Digital /O TIMING. . ..o vttt e 133
External Mux Control 133
I EITUPLS. . .o 134
JTAG TestBUS ... e 136
MGB2PCl BUSFEaIUreSot 136
PClBusl/Oand MemoryMapcovvei e 136
MB2 BOOLSrapping - - - v« o v ettt e e e e 138
Appendices. ... 139
Board Layoutiini e 139
CoNNECLOr PINOULS. . . . o .ottt ettt e 141

JP17, JP18, JP21, JP22, P1, P2 - OMNIBUS /O Connectors (M62 only) 141

JP17, JP18, JP21, JP22, JP32, JP33 - OMNIBUS /O Connectors (cM62 only)
142

JP19, 20, 23, 24, 34, 35- OMNIBUSBusConnectors. 143
JP14—Digital /O CONNECtOro ot 145
JP31 - Miscellaneous Digital I/OConnector.ooouun.. 146
JP15, JP16 — Processor Serial Port Connectors. 146
JP11 - JTAG Debugger CONNectorocvviiiiiie e, 147
JP30—FIFOPOrt Connector.ovi vt 148
TMS320C6201 Limitationsand Errata. 149
Processor Yoeed Limitationsand External Memory. 149
TexasInstruments DeviceErrata, 150

M62 Deve opment Package Manual

M62 Devel opment Package Manual

TABLE 1.
TABLE 2.
TABLE 3.
TABLE 4.
TABLES.
TABLE 6.
TABLE 7.
TABLE 8.
TABLE 9.

TABLE 10.
TABLE 11.
TABLE 12.
TABLE 13.
TABLE 14.
TABLE 15.
TABLE 16.
TABLE 17.
TABLE 18.
TABLE 19.
TABLE 20.
TABLE 21.
TABLE 22.
TABLE 23.
TABLE 24.
TABLE 25.
TABLE 26.
TABLE 27.
TABLE 28.
TABLE 29.
TABLE 30.
TABLE 31
TABLE 32.
TABLE 33.
TABLE 34.
TABLE 35.
TABLE 36.
TABLE 37.
TABLE 38.
TABLE 39.
TABLE 40.
TABLE 41.

PCl Debugger Package Contentsot 22

ISA Debugger Package Contents.ot 22
Pod-Based Emulator Card I/O Address Switch Settings 33
Host Support Applicationsot 35
ZumaToolset SOUrce DIreCtOnieS. . .. v vttt e e e e e 90
Zuma Tool set Support Subdirectoriest e 91
Texas Instruments Standard Library Functions 93
M62 External Peripheral Memory Map. 94
Digital /O AccessMemory Locationt 95
Table 17: Digital 1/O Direction Configuration., 95
Digital I/O Latch Configuration. 96
Digital I/OLibrary FUNCLIONS.o e et 96
CLanguage Timer FUNCLIONSot o e 97
STDIO Driver FUNCHIONSttt et e e 98
Generic DLL Function List e 111
Required disk directory gructure for Il developmenttools.. 116
M62 External Memory Map.ot 119
M62 Bus Control Regiger InitidlizationValues. 120
M62 1/OBusMemory Mapping.o e ettt et e 121
/O BUSPOWEr RaLiNGS. . . o ottt et e e 122
Receive FIFOPort Level Status Register Definition 125
Transmit FIFOPort Level Status Register Definition. 125
FIFOPort Timing Parameters.o i 128
External Timer Control RegISEErS.o oot e 130
AD9850 Control REGIFENSottt 131
Digital 1/0O Control REgISErS . .. oo vt 132
Digital /OPort Timing Parametersoiiii e e e 133
TERM Function Memory Map.o e 134
External Interrupt Input Control Regigters. 135
Interrupt Source4 and 5 Select Register Values., 135
Interrupt Source6 and 7 Select Register Values.t 135
HPI Port PCl BUSM@PPING oo et ettt e e e e et e e e 137
OMNIBUS /O Connector PINOULS. . . .« .o v e et 141
OMNIBUSI/O Connector PINOULS.ottt e e 142
/O Module BUuS CONNECEONS.o vttt et e et e e 144
/O MOdule BUS CONNECIONS. . . . oottt ettt it e e e e 145
Digital /O CONNECLON ottt et e e e e 145
Miscellaneous Digita 1/0 CONNECLOro oot e 146
Processor Serial Port ConNeCOr.o vt 147
JTAG Debugger Connectort e 147
FIFOPOrt CONNECIOr . . . oo ottt e e e e e et 148

M62 Deve opment Package Manual

M62 Devel opment Package Manual

FIGURE 1.
FIGURE 2.
FIGURE 3.
FIGURE 4.
FIGURE 5.
FIGURE 6.
FIGURE 7.
FIGURE 8.
FIGURE 9.

FIGURE 10.
FIGURE 11.
FIGURE 12.
FIGURE 13.
FIGURE 14.
FIGURE 15.
FIGURE 16.
FIGURE 17.
FIGURE 18.
FIGURE 19.
FIGURE 20.
FIGURE 21.
FIGURE 22.
FIGURE 23.
FIGURE 24.
FIGURE 25.
FIGURE 26.
FIGURE 27.
FIGURE 28.
FIGURE 29.
FIGURE 30.
FIGURE 31.

Pod Based Emulator Switch/Jumper Positions 33
Hasp KeY o 34
ANIFFile Parameters ... 36
Terminal Emulator Applet ... 58
Terminal Emulator Flle Menu o 58
Diagnostic Received when Target DSPisHalted. 59
Terminal Emulator Plot Menu Dialog BOX.o 59
Terminal Emulator Window Menu 62
The Coff FileDownloader Applet i i 64
The COFF DUMpP ULIlity . ..o e 66
COFFDUmMp Utility OULPUL. . ..o e e 66
Creating aNew Project in Code Composer Studio ..., 71
Adding Filesto a Code Composer Studio Project 71
Code Composer Studio Project Window. 72
Code Composer Studio Compiler BuildOptions ..., 73
Code Composer Studio Assembler Build Options it 73
Code Composer Studio Linker BuildOptions 74
Code Composer Studio Build ResultsWindow ..., 74
Code Composer Studio Compiler Build Options, 75
Code Composer Studio Assembler Build Optionst 76
Code Composer Studio Linker BuildOptions ...t 76
Code Composer Studio Build ResultsWindow ..., 77
M62/cMB2 Block Diagramt 118
FIFOPort Block Diagramci i e et e et 123
Receive FIFOPort Level StatusRegister ...t 124
Transmit FIFOPort Level StatusRegister oo 125
FIFOPort Daughterboard Mechanical Dimensions —coiiun... 127
FIFOPOIt TIMING ..ot e e e e 128
Serial Port Daughterboard Mechanicd Dimensions 129
Digital /O POrt Timing ...t e et e et 133
OMNIBUS I/O Connector Pin Configuration —ccoiiiineinn... 143

M62 Deve opment Package Manual

10

M62 Devel opment Package Manual

CHAPTER 1

| ntroduction

This document describes the Zuma software devel opment environment for Innova
tivelntegration (I.1.) digital signal processor (DSP) cards. The environment comes
complete with ANSI compliant C code Compilation, Assembler, Linking, Debug-
ging, and Windows i nterface software and represents the most compl ete package
available for DSP code creation for Texas Instruments DSP processors.

Each Developer’s Package consists of four major features:

TM S320-based DSP board

¢ Texas Instruments Floating Point C Compiler/Assembler tool set

¢ Code Composer JTAG-based hardware-ass sted debugger

e Zuma software toolset induding:

DSP Peripheral Library - supporting on-board peripherals and DSP functions,

with full source code

Custom 32-bit Windows 95/98/NT compatible dynamic link library (DLL) -
which utilizes a custom, 32-hit, Ring 0/Kernd-mode device driver for host PC
software application development

Host Support Applets - for automatic program download, terminal emulation,
COFF file dumping and on-board flash programming

Sample Applications - showing Host PC aswell astarget DSP coding tech-
niques

Development Package Manual

Introduction

Thismanual discusses instdlation issues and includes full documentation on all Innovative I ntergration
software tool s (please see the accompanying manuals for specific information on the T.1. tool set or
Code Composer Studio software packages). Ingallation isdiscussed first, followed by brief introduc-
tions to each of the software packages and instructions on their use. General software devel opment
issues are presented, and a tutoria on DSP software devel opment, particularly asit relates to the inte-
grated use of the software packagesincluded in thiskit, are also discussed. Referencesaregiven for the
peripheral librariesand host DLL packagesin the Appendices.

A Note about this Manual

Certain typography conventions are used in this manual to indicate user operations, file types, etc., as
follows:

* Windows application menu commands areidentified and presented as pipe-delimited strings indi cat-
ing the menu entries which are being discussed. For example, the Load Program menu item under
the File menu in the Code Composer package would be named by the following string:

File | Load Program

Computer readabl e files and keyboard input/output are represented in Courier font, with user input
in bold. For example, aprogram file will be referred to by name as

C:\SBC32\TALKER\TALKER.OUT
while user input and commands ook like

ROM MYPROG.OUT

12

Devd opment Package Manual

CHAPTER 2

Ingtallation

Installation of the Zuma toolset consists of both hardware and software ingall ation
procedures. Thisdocument contai ns compl ete instal lation directionsfor Innovative
Integration’s Development Package. T his document aso detail s the features of the
Innovative I ntegration software generation tools, applets, utilities and peripheral
library functionsfor the target DSP board. Refer to the Hardware section of this
manual for adiscussion of hardware-specific configuration information.

The Devel opment Package consists of software elements developed by Innovative
Integration, Texas Instruments, and other sub-vendors. Thisdocument is intended
to augment, not replace, the Installation Supplement and the documentation pro-
vided with the Tl C compiler, Code Composer Studio, and other third-party soft-
ware packages. Refer to the documentation provided with those products for a
compl ete discussion of ther features and use.

Host Hardware Requirements

The software deve opment tool s for the Zuma tool set require an IBM or 100% com-
patible 486-class or higher machine for proper operation (Pentium-class machines

are highly recommended). The host system must have at |east 16 Mbytes of mem-

ory, up to 84 Mbytes available hard disk space, and a CDROM drive. Windows 95/
98 or NT (referred to herein simply as Windows) is required to run the developer’s

package software, and is the target operating system for which hogt software devel-
opment is supported.

Development Package Manual

13

Installation

Software I ngallation

Theinstallation congists of the following major components: Tl Compiler ingall, Code Composer Stu-
dio install, and the Zuma Toolset ingall. The instdlation timewill take approximately 10to 15 minutes
depending on the system’s speed. 1f you have not purchased some of the abovelisted components, you
can go through the custom install to unselect the non purchased items.

Begin I ngtallation

To install DSP board based products, the Logger PCI, or any of our support DL L's start the host operat-
ing system and insert the installation CD. If the CD does not auto start, click on the <Start> button,
then <Run>. Enter the path to the SETUP.EXE program located at the root of your CD-ROM drive,
i.e. DASETUP.EXE. Thesetup program will run. Select the tab for thetype of installation you are
going to do. From there, select the exact product you wish ingalled. All necessary components includ-
ing the Hasp key drivers, the board drivers, the peripherd libraries and debugging driverswill be auto-
matically ingtalled to your host PC using Install Shield.

Innovative Integration Product CD -2.01 |
Q Innovative é
Integration

Chico PCl/CompactPCl Products | Stand Alone F'ru:u:luu:tsl |54, F'ru:uduu:tsl Turnke_ul Support Filesl

:

ADCES

b4

b G

[Juatrobs

CTEx

Click ar the kEy inztall button to begin the InztalSkisld Wizard
which will inztall the neceszamn components of the
MEZ MET chEZ and chEY base boards.

Guit | [~ Don't Autorun Again

14

Devd opment Package Manual

Software Installation

Important, Microsoft WindowsNT User sPlease Note: Theinstallation of the NT Device Driver for
aPeripheral Library requires the installing user to have Adminigrator rights on the system. This does
not have to bethe actual Adminigtrator login, aslong as the rights are the same.

Additionally, applications that receive interruptsfrom a target board must be run by a user with Admin-
istrator rights.

Ingallation Instructions

Install Shield will be automatically invoked. The following screen will be displayed while Install Shied
is copying the setup files onto your system.

Setup |

which will quide pou thraugh the rest of the zetup process.

g b Bat Install Setup iz preparing the InstallS hield® “wWizard
= Fleaze wait.

99 %

The firg screen that will appear is the we come screen. Click <Next>

1 MEx Zuma Toalset Installation =1

M6x Zuma Toolset Installation

. he Wix Setup progsars. Thi
— ratel M i Zurwa Todiset, Version 1.1 on sour
IM6x: vl

o el
elone runving tis Sehup pogien.

. Cich, Cancel 1o gt Sebun and then clase ary pogeans ou
-~ f’/ s
WAENING: Thas progran i pectacied by coppight Lew and
ahnsloesl Veath

l' "l*"ﬂﬂ* - Urrihci oed ieproduction of deisadon of thes pogiam, o
g ,:;-_:—;F‘:-,} Eoticn ol s vl 5o civia e

[Beiv_ Cancel

Development Package Manual

Installation

Now, the license agreement dialog box is displayed. After reviewing it, if you agree, Click <Yes>. If
you do not agree, contact the sales support department.

Software License Agreement E

Fleaze read the following License Agreement. Press the PAGE DOWM ke to zee
the rest of the agreement.

Licenze Agreement for Innovative Integration Products -

Read the Innovative Integration License Agreement very carefully.
Installing arw of our drivers, programs or DLL's indicates acceptance of the
Innowative Integration Licenze Agreement.

1. Licenze - Innovative Integration, Inc. grants vou a licensze to use the software
programs and documentation in this package on a single user computer. ou may not
uze the Licensed Matenals on more than one computer at the same time or otherwise
network the Licensed Matenals. Use of the Licensed Matenials on a network requires
the payment of additional fees.

2. Restrictions - You may not reverse-assemble o reverse-compile the Licenszed Materials
provided in object format, rou may not sublicenze, transfer assign, rent or leaze the LI

Do you accept all the terms of the preceding Licenze Agreement? |f you choose Mo, Setup
will cloze. Toinstall MEx, pou must accept this agreement.

< Back Yes Hao |

Next you will be prompted to enter your user information. Enter the User Name, press <Tab>, the
Company Name and click <Next>

User Information E

Type your name below. v'ou must alzo type the name of the
carmpany yau wark for.

IM6x

I .arne: IUser M ame

Company: ICompan_l,J Mame

< Back I Mest » [ZI Cancel |

Note: Although any instalation drive and path may be specified when ingalling the Peripherd Library,
Innovative Integration highly recommends that the default ingallation drive and directory be used
whenever possible. The Code Composer workspace filesfor the sample DSP applications have been

16 Devel opment Package Manual

Software Installation

setup with the default directory pathsin mind. If an dternatedrive or directory is used, the workspace
project setups will need to be changed to reflect the new path. See the Code Composer documentation
for more detals on the use of projects and workspaces.

The Innovative Integration Peripheral Library isincluded with the purchase of all Devel opment Pack-
ages, and includes example DSP software and a compl ete set of peripheral control libraries as well as
sample host applicaionsand DLL'sfor usein host code development.

Click <Next> when you are done.

Choose Destination Location

Setup will inztall b Ex Zuma Toolzet in the Following folder.

Y [Tainstal to this folder, click Nest,
M6Xx

Toinstall to a different folder, click Browse and select anather
falder.

“fou can chooge not to install MEx Zuma T oolset by clicking
Cancel to exit Setup.

/_5:::,7 Destination Folder
. g C:\MBx Browse... |

Cancel |

Now you may choose the instdlaion type. If you choose “Typical”, then the following components will
be installed:

* Code Composer Studio

* Periphera Libraries

* HASPKey drivers

e DSPboard drivers

e JTAG debugger driver (see note bel ow)

* Portlo (for NT installsonly)

Development Package Manual

17

Installation

NOTE: Both PCI and I SA JTAG drivershave been provided on the installation CD. The PCI JTAG
driver isthe default. If you areusing an I SA JTAG model, select custom instal. Then de-select the PCI
JTAG driver and select the ISA JTAG driver.

If you choose “Custom”, then you may choose the components you would like ingalled

Make your selection and click <Next>.

Setup Type

Click the tpe of Setup you prefer, then click Mest.

IM6x

| Cuistarn

— Description
Inztall all files automatically

< Back I Mest » [i I Cancel |

If you chose "Custom”, then you will see the following screen in order to choose the components you
want to ingall. Click <Next>when you have made your selections.

Select Components [x|

Select the components you want to install, clear the components
you do not want to inztall,

'[M ‘GX' LComponents

v 25708 K
Haszp Kep drivers 21K

DSP board drivers 28K
PC1JTAG debugger drivers 17k

Drescription

Selecting this companent will start the Code Charge. . |
Compozer Studio [nztallShield inztallation.

Code Compozer iz uzed for wiriting _

Debugging your projects.

Space Reguired: 23795 K
Space Available: 2096832 K.

< Back I Hest » [:! Cahicel

18 Devel opment Package Manual

Software Installation

Next, the Ingtall Shield will ask which type of JTAG you wish to install (PCI or ISA). After you have
sdected the type of JTAG, click <Next>

Select Debugger Style E3

Select the style of JTAG debugger pou wish to install;

IM6x

 1SAITAG

< Back I Mest » [ZI Cancel

The installation will add additional components to your system in order support the development envi-
ronment you are be working in. Please select the environment you are working in. 1f you are working
in an aternate environment not listed below, select none.

Select DspComponent

For additional comporents. please select the dewvelopment
enviranment(s] you will uze:

IM6x

™ Wisual Basic or other Activel platform
v Mone

< Back I Ment » [_\I Cancel

Development Package Manual 19

Installation

The Install Shield will now prompt you for the Code Composer Studio password. This can be found on
the Innovative Integration’s CD cover. If you did not purchase the Code Composer Studio with your
package, go back and unsdect it from the cusom screen.

Enter Password

Flease enter the passward for the Code Composer Studio found
an the Innovative Integration CD.

Y If you do nat wizh to install CodeComposzer Studio, press the
I[MGK' BACK button to reach the Setup Type and select Custom. Then

< Back I MNewt » [:I Cancel

Next, you will be prompted for the program folder name to use for the board being installed. Click
<Next> when you have made your selection.

Select Program Folder |

Setup will add program icons to the Program Folder listed below.
You may type a new folder name, or zelect ohe from the existing

T ey Folders list. Click Mest to continue.
M6Xx:

Program Folders;

5P Boar

E xisting Folders:

Adobe

Adobe Acrobat 4.0
ATl Multimedia
Aureal Vorkes
Borland C++Builder 4
Chico-Amada

Code Compozer

Code Composzer Studio "CEO00 ;I

¢ Back I Mest » 'E! Cancel |

20 Devel opment Package Manual

Software Installation

Next you will be shown a summary of the install ation selections you have madein the previous screens.
If any of the itemsare incorrect, usethe <Back> key to get to the screen with the sd ection you would

like to change. When you are satisfied with the instal lation setup, dick <Next>to proceed with the
install.

Start Copying Files | x|

Setup has enough information to start copying the program files.
IF pou want to review or change any settingz, click Back. 1f you

JMBX are satisfied with the settings, click Next ta begin copying files.
L

Current Settings:

Werzion: 1.1 -
Setup Type: Typical
The fallowing companents will be installed:

Code Compozer Studio

Peripheral Libraries

HASFE Key drivers

DSP Board divers

PCIJTAG debugger drivers

bt Periph Libraries Destination Folder: C:\MEx
- e User Infarmation: hd
Kl 3

Cancel |

Install Shield will now begin copying files and updating your system. A description of what is being
copied should appear as shown bel ow.

£ Miix Zuma Toolset Installation

M6x Zuma Toolset Installation

H a
I Copying Peripharal Libraries.
H : chmERbim AN spmS.di
: | wmx I .
3= | A)T'
| e
R ERT I AT frpeeas

Development Package Manual

Installation

Next, InstalShield will take you through the JTAG Debugger Driver Ingallation.

JTAG Debugger Driver Ingallation

Innovative I ntegration Devel opment Packages indude a JTA G-based, hardware-assisted C/A ssembler
Source Debugger called Code Composer Studio. If you are not usng Code Composer Studio or have
already installed it, please skip this section.

If you have purchased an Innovative | ntegration hardware-ass sted debugger, additional hardware, soft-
ware and documentati on have been included in your shipment. You should have received the foll owing:

Item

Function

JTAG debugger board (PCl-
bus compatible)

Thisis the PCI-bus-compatible JTAG emulator host interface
board which plugsinto your PC to allow communication with the
target DSP over the JTAG scan path.

Target interconnect host
cable

This provides an electrical connection between the host interface
board and the target digital signal processor CPU.

PCI JTAG pod/pod target
cable

PCI Debugger pod and pod target cable.

Code Composer Debugger
package

(included on installation CD)

Thisis the host software, which implements the debugger inter-
face. Custom versionsexist for each different DSP family - C2x,
C3x, C4x and C5x.

TABLE 1. PCI Debugger Package Contents

Item

Function

JTAG debugger board (ISA-
bus compatible)

Thisis the |SA-bus-compatible JTAG emulator host interface
board which plugsinto your PC to allow communication with the
target DSP over the JTAG scan path.

Targetinterconnect cable/pod
cable

This provides an electrical connection between the host interface
board and thetarget digital signal processor CPU.

Code Composer Debugger
package

(included on installation CD)

Thisis the host software, which implements the debugger inter-
face. Custom versionsexist for each different DSP family - C2x,
C3x, C4x and Cbx.

TABLE 2. | SA Debugger Package Contents

22

Devd opment Package Manual

Software Installation

PCI-JTAG Debugger Driver Installation: Windows 9X/NT

The PCI style JTAG debugger is aplug and play device. The JTAG debugger drivers are automatically
installed for you and there is no acknowl edgment window.

ISA-JTAG Debugger Driver Installation: Windows 9x

The Add New Hardware Wizard will guide you through the JTAG device driver ingallation. Select
<OK> to continue.

Information

The Add Mew Hardware wizard will now be launched to azsign
hardwsare rezources to the 154 JTAG Debugger Driver.

Select <Next> to proceed to the next phase of the hardware driver installation.

Add New Hardware Wizard

This wizard installs the zoftware for a new hardware
device.

Before continuing, close any open programs.

Ta beqin inztalling the saftware for your new device, click
Mest.

< Hack Cancel

Development Package Manual

23

Installation

Click <Next> to allow Windows to search for any new plug and play devices.

Add New Hardware wizard

Wfindowes will now search for any new Plug and Play
devices on your spstem,

“our goreen may go blank during thiz process, Thiz iz
rormal.

To continue, click Mext.

Cancel

If Windows finds any plug and play devices, they will be listed in the screen below and will ask if the
device you want to install is liged. Select <No>, and then click <Next> to proceed:

Add Mew Hardware Wizard

|% the dewvice that you want to install listed below?

% iNo, the device izn't in the list]

ez, the device iz in the list.

Selestthe deyice that noumant tontstal) arnd e
clickHEnn

Devices:

qﬁ Kengington Mousehwiorks Driver

< Back I Mext » I Cancel

24 Devel opment Package Manual

Software Installation

Windows will now ask if you want it to search for non-plug and play devicesinstalled in your PC.
Click <No>, and then <Next> to proceed:

Add Hew Hardware Wizard

Windows can now search for hardware that is not Plug
ahd Play compatible, or you can select your hardware fram
alist.

When Windows detects new hardware, it automatically
determines the current zettings for the device and installs
the correct driver. For this reazon it is strongly
recommended that you have Windows search far your
new hardware.

Do wou weant Windows to zearch for pour new hardware?

" *Yes [Fecommended)

& Mo, | want to select the hardware from a list:

< Back I Mext > I Cancel

Windows will prompt you as to the type of new hardware being ingtalled. Select <Other>, and then
<Next> to proceed:

Add New Hardware Wizard

Select the type of hardware you want to install

Hardware types:

Modemn ;I
@ tonitors

b Mousze
ko Multi-function adapters

[EE) M etwork adapters
Other
C@ Other devices

(% PCMCIA socket
5 Parts [COM & LPT)

<58 Printer =

< Back I MHext » & I Cancel |

Development Package Manual

Installation

Windows will then list the installed drivers. Select the JTAG Controller device and then click <Next>
as seen on the screen below.

Add Mew Hardware Wizard
_\> Select the manufacturer and model of your hardware.
If your hardware is nat listed, or if pou have an installation disk, click Have

Dighe.IF pour hardware iz =hill not listed, click Back, and then select a different
hardware type.

hdd Supercontroller

Hawe Dizk... |
< Back I et > I Cancel |

The next dialog box will display the /O address assigned to the JTAG board. It isimportant to make a

Add Mew Hardware Wizard
_\> Windows can inztall your hardware, uzing the following settings.

“Warning: “rour hardware may not be set to uge the resources listed. You can
uze Device Manager to adjust these settings before restarting your computer.
Click start, point to Settings, click Contral Panel, click System, and then click
the Device Manager tab. Tao change your hardware settings, see the
documentation that came with your hardware.

To continue instaling the software needed by your hardware, click Mext,

Resource type | Setting | Frint.... |

Input/Output Fange 0240 - 027F

< Back I et > [I Cancel |

note of the addressrange listed, asit may be needed when configuring the emulator prior to JTAG
hardware ingtall ation.

26 Devel opment Package Manual

Software Installation

Thisinformation can be re-displayed at any time by simply opening the control panel, double-clicking
<System> icon, selecting <Device M anager > tab, double dicking the <Other > category, double click-
ing the JTAG controller device and viewing its <Resources> tab.

Windowswill ingall the drivers. When finished, Windows shows the dial og box below. Click <Finish>
to continue

Add Mew Hardware Wizard

“windows haz finizhed installing the software necessary to
support your new hardware.

< Bachk Cancel |

The Install Shield will now ask if you would like to shutdown your computer. Sdect <NO> to proceed
with the instaltion.

System Settings Change
@ T o finizh installing wour hardware, you must shut down your computer, turn it off, and install the card for pour hardware.

Do you want to shut down your computer now?

ISA-JTAG Debugger Driver Installation: Windows NT

If you are not instaling on a WindowsNT system, skip to the next section of this manual. The Installa-
tion will guide you through the DSP board device driver ingallation for Windows NT. If you are not
using Windows NT, skip to the next section.

Development Package Manual

27

Installation

You will be prompted to launch NT Diagnostics. Aswith the DSP board device driver installation,
sdect the <Resour ces> tab and then click on the <I/O Port> button to see all used /O locations (see
figurebelow). The JTAG board requires 40h bytesof 1/0 space. The JTAG debugger does not require
IRQ or memory resources.

Important, Please Note: Theinstallation of the NT Device Driver for the JTAG card reguires the
installing user to have Administrator rights on the system. This does not haveto be the actual Adminis-
trator login, as long as therights are the same.

Warning

& Setup will now launch NT Diagnistics so thatyou can locateuncommitted /0 resources to be
used forthe JTAG board.
Afteryou've isolated these resouces, gquitNT Diagnostics, and then fillin Setup's JTAG
BOARD SETTINGS dialog.

£ Windows NT Diagnostics - \W\TOM_SERVO

File Help
Yersion | System | Display Drives I temony I Services I
Resources Enmvironrment I MNetwork
Include HAL resources [
Address IDEViEE |Bu5 |T pe ot
0060 -0060 iG042prt 1} Isa

00B4- 0064 iB8042prt 0
00ED - 00 chips o
O01CE-01CF VgaSave 1}
01F0-01F7 atapi 0
02C0-020F GE3NT o
0376-037A Parpart o
03B0-03BE chips o
03B0-03BB “VgaSave o
03C0-03DF chips o Isa
03C0-03DF VgaSave o
03F0-03F5 Floppy i
03F7-03F7 Floppy 0
03FB-03FE Serial o
83D0-8303 chips o
67D0-87D3 chips o
8BD0 -8B chips o
AFDN-RFD3 rhins n

IR

DA | Mermaory | Devices

Properties Refresh | Frint | aK |

Once you have located the appropriate resources, click <OK > in the Diagnostics dialog box.

Theinstall program will then display the default resource settings. Make sure to change the settings if
they conflict with existing devices.

28 Devel opment Package Manual

Software Installation

JTAG BOARD SETTINGS

Enterthe resources to be committed to the JTAG below

110 240

< Back | Next> | Cancel

Important, Microsoft Windows NT Users Please Note: The NT Device Driver isconfigured to start
up Automatically after it isinstalled.

Code Composer Studio Installation

The Install Shield will now launch the Code Composer Studio instd lation program, click <OK > to pro-
ceed. Pleaserefer to the Code Composer Studio Manual and on screeninstructions for additional instal-
lation details.

Information]

@ The Code Compazer inztall will now be launched.

The Code Composer Studio setup compl ete message bd ow indicates that the Code Composer Setup
program should be run to configure the device drivers. Thiswill not be necessary since the device driv-
ers have been automatically configured for your target hardware. The rel ease notes can be view after
the completeinstallation is concluded. Therefore, un-select both the “Launch release notes” and the
“Launch Code Composer Setup”. Click <Finish> to proceed with the installation.

Development Package Manual

29

Installation

Setup Complete

Antitinuz alert, see release notes.

[T Launch release notes.

[~ Launch Code Composer Setup

The options selected will run after a reboat.

< Bach I Finizh I: I

Note: The Code Composer Studio setup compl ete message below suggests restarting your computer.
To continue with the instal lation, select the “No” option and then click <Finish> to proceed with the
M6x Zuma Tool installation

Setup Complete

Setup has finished copying files to vour computer.

Before you can use the program, you must restart Windows or
your computer.

‘ez, | want to restart my computer now,

& Mo, | vall restart my computer ater

Remove any digks fram their diives, and then click Finizh to
complete setup.

< Back I Finizh I:l

In order for Code Composer to function you must install the Code Composer Studio key onto the paral -
lel port containing the Hasp key. The Code Composer Studio key can be plugged directly into the Hasp
key.

30 Devel opment Package Manual

Software Installation

Hasp Key I nstallation
The Hasp key installation utility should be automatically activated next.
Upon completion, the Instal Utility will show this screen below. It is simply an acknowledgment that

the Hasp install went successfully. Your computer must be restarted before any changes made will take
effect. Click the <OK> button, it will NOT restart your computer.

Aladdin Device Driver Installation Utility for Win32 [

The operation waz completed successfuly.

If you need at any time to run the Hasp Device Driver Ingallation Utility, simply run it through the
Install Shield, following the ingalation instructions. When asked for the " Setup Type", choose "Cus
tom" and select only the "Hasp Key Drivers' ingallation.

To uninstall the Hasp Device Drivers, double click the "Uninstal Hasp" option on the boards program
icon. For instance, from the "Start Menu", "Start | Programs | <target board> | Uninstall Hasp".
Thiswill uninstall the Hasp Key Drivers.

End Of I nstallation

Now you will see the final installation screen shown below. If you would like to review the Read Me
file, select the checkbox.

Setup Complete
Setup has finizhed ingtalling MEBx on your computer.

Y Setup can launch the Readie File if you select it below,
'[M Gx ‘when you are finished with the Reade file, SHUTDOWN,

install the hardware and boat back up.

IV ires, | want to view the Readhe File

Click. Finizh to complete Setup.

Development Package Manual

Installation

At this point you havefinished the software ingtall ation process. Exit by clicking on the <Finish> but-
ton and go to the Hardware Ingallation section of this manual. Thiswill conclude the Innovative Inte-
gration Development Software Packageingallation. Removethe CD from the drive and shutdown your
computer system in preparation for instdling the hardware.

Hardware Installation

The software components of the Development Package have been installed. To proceed with the Devel-
opment Package Kit installation, it will be necessary to configure and install your hardware.

JTAG Emulator Hardware Installation

First, the emulator hardware must be configured and installed into your PC. The emulator hardware is
described in the table bel ow:

Type Features

Pod-based Uses aspecial ribbon cable with integrated line driversto connect the
target DSP emulation signalsto the JTAG debugger card. Usableon
3.3 volt or 5volt designs. (Including ‘ C54x and ‘ C6x)

PCI Pod-Based Emulator | nstall ation

To install the PCI pod based emulator, follow the instructions be ow:

e Shut down Windows and power-off the host system.

* Touch the chassis of the PC to dissipate any built up static charge.

* Securely install the JTAG board into the host computer.

* Connect the host pod cabl e from the JTA G board external connection on the end bracket to the JTAG
pod connection. Then, connect the target cable from the JTAG pod to thetarget DSP card connec-
tion.

32

Devd opment Package Manual

Hardware Installation

ISA Pod-Based Emul ator |ngtall ation

Use the following directions to install a pod-based emulator card.

If you haven't already done so, shut down Windows and power-off your PC. Set the emulator card's
address to the gtart of the range given by the emulator device driver just installed (Input/Output Range
from the JTAG Debugger Driver Installation section). The emulator address is adjusted by using a set
of jumperson the emulator board. Thefollowing diagram and table give the appropriate jumper/switch
setting for the pod-based emul ator board.

ISA Bus Address Jumpers

\

TAROET

> S 5 - qogoyond’s (€D

5 bood 0.0 ml"n“ a, |
3 ofg® swmmido, j=t- 2N =N

5] EITGE=, o o

D8 s RS N P I |-

9 = Iy =0 Q
35 R Siob\mind- | il 088

c g . Q
o o ‘o N P ed
&3 ‘-ﬂI]I]I]I]I]DI]III]I] nec E UﬂlllJﬂﬂUﬂ = 80
~ g Pleod s.q _Un‘:j 8 ‘ _5 LAY : O, % 'og
g g oot e = E puooone’s | § o
g8 eeeo i seeey o & ‘g g$
= oz llil'l'llii“il n|]|]|u||||||]||t|§ R - D . B - 8480

a 3 .mmmnmcuummm =l D' |_ - _J- uuﬁ'ﬂuuuﬁ o®
Graa Juvben Andige ! 0P i &
: & EE R 25 m-mi-m nnnnmnnu so-imnilbind 5500, |
Made in UG D" ©ma dwenas ka Q‘F . - - Rorce

. PRESENCE DETECT

OU000000000000000 I_WUUUUUUUUUUUUUUUUUUUUULUUUUUUUU]|

FIGURE 1. Pod Based Emulator Switch/Jumper Positions

I/O Address A9 A8 A7 A6
0x100 ON OFF ON ON
0x140 ON OFF ON OFF
0x180 ON OFF OFF ON
0x1CO0 ON OFF OFF OFF
0x200 OFF ON ON ON
0x240 OFF ON ON OFF
0x280 OFF ON OFF ON
0x2C0 OFF ON OFF OFF
0x300 OFF OFF ON ON
0x340 OFF OFF ON OFF
0x380 OFF OFF OFF ON
0x3C0 OFF OFF OFF OFF

TABLE 3. Pod-Based Emulator Card 1/O Address Switch Settings

Development Package Manual

33

Installation

Once the addressis =, install the board in the host computer and connect the pod cable to the external
DB25 connector on the end bracket. Plug the pod's target connector into the target DSP card. On JTAG
pods, astandard 14-pin connector has been provided.

DSP Board Ingallation

Innovative I ntegration makes DSP products that fall into three basic categories. Hardware ingallation
directions are given below for the target card. When installing the target card:

1. Power off the hogt system and touch the chassis of the host computer system to dissipate any satic
charge.

2. Removethe DSP card from its protective static-safe shipping container, being careful to handle the
card only by the edges.

3. Install the DSP board into an avail able 32-bit PCI slot in your PC.

4. Connect the JTAG debugger pod cable from the JTAG board connection to the connector (JP19) on
the target board.

5. Securely install the Hasp Key (see figure below) provided with your board into a pardlel port now,
usually LPT1. Terminal will not run without this key.

6. Inorder for Code Composer Studio to function, you must ingall the Code Composer Studio key
onto the parallel port containing the Hasp key. The Code Composer key can be plugged directly into

the Hasp key.
7. After completing the hardware ingtallation, boot up your PC.

8. Thetarget card is plug and play, which Windowswill detect it at start-up.

FIGURE 2. Hasp Key

Devd opment Package Manual

Testing the Development Package Installation

Testing the Devel opment Package Installation
At this point, all of the core software and hardware d ements of the | nnovative | ntegration Development

Package have beeninstalled. Through this section, <target directory> represents the target boards direc-
tory (example C:\mdx or C:\M6x). In order to test your installation, follow the ingructions bel ow.

Configuring the Appletswithin the Development Package

Each of the Development Packages is supplied with several, standard Windows appl ets, which are used
to perform common functions with the DSP board. These standard appl ets include;

Applet Function

DOWNLOAD.EXE Application to download a debugged DSP application to aDSP
target board without using JTAG debugger.

TERMINAL.EXE Application to act as atermina emulator to standard /O requests
posted by the target DSP board during target executing.

COFFDUMPEXE Application to display memory usage of target executables.

BURN.EXE Application to support burning application code and Talker code
into FLASH ROM on FL A SH-based DSP products.

TABLE 4. Hog Support Applications

These applets arelocated in the root of the board-specific peripheral libraries and may be accessed using
the Explorer or by right-clicking the <Start> button, clicking <Open>, double-clicking <Programs>
and double-clicking (opening) the Fol der associated with the DSP board. This should open a window
containing icons similar to the following:

& MEx DSP Board M=l E3
J File Edit Wiew Go Favortes Help

Boot Coffdump Dovnload Install HASP JTAG
Diagnostic
A O W
Terminal Uningtall Uninstall bEx Wiewer
Configuration HaSP
|12 abject(s) |4.33KB | =] My Computer y

The target applets are configured in 2 ways:
Directly with the .exefile (“Directly with the .exe fil€’' on page 36)
Through the Start menu (“ Through the Start menu” on page 36)

Development Package Manual

35

Installation

Directly with the .exefile

Start the applet by simply double-clicking the applet from within the program group, to run it. For
instance, “C:\<target directory>\Terminal.exe”. This creates a.IN| datafile that contai nsthe configura-
tion information for the applet. If necessary, this.INI file can be edited (using Notepad or a text editor)
to modify parameters asrequired.

For example, you may need to modify the Target Number of the DSP board. Thisis simply ahandleto
aDSP device used by the Windows DL L and should be zero unlessyou are using more than one DSP in
your PC at atime.

B C:\SBCI1CCATERMINAL.INI

[Farameters]
Target=0

Quiet Mode=1
buto Download=0
[Window]

=714

T=601

FIGURE 3. .INI File Parameters

On sngle-board DSP's, target zero refers to serial port COM1 and target one refers to serial port COM2,
etc.

Through the Start menu

Fromthe“ Start Menu”. For instance “Start | Programs | <target directory> | Terminal”. If you need
to modify the Target Number of the DSP Board, then you must modify the shortcut to the applet to use
the correct Target Number. Bring up the Properties sheet for the shortcut of the applet by right-dicking
Terminal off the Start menu.

In the Terminal properties window, sdect the “ Shortcuts” tab. Change the Target to 1 by modifying the
“Target” to read “C:\<target directory>\Terminal.exe —t 1". Click <Apply> and then <Close>.

Runningthe" JTAG Diagnogstic' Utility

To verify that the JTAG is functioning properly, open the JTAG Diagnostic by right-clicking the
<Start> button, clicking <Open>, double-clicking <Programs>, double-clicking on the <tar get direc-
tory>, and double-dicking on <JTAG Diagnostic>. The JTAG Diagnogtic utility should run, seen
below.

36

Devd opment Package Manual

Testing the Development Package Installation

% JTAG Diagnostic =
TITAG Information
PCl JTAG
Address 0xES00
Reset |
Access Test
Start Som | E xit |

Then press the <Reset> button before running the test.

If thefollowing 2 items are true:

* The JTAG card must be properly jumpered to match the Input/Output Range specified by Windows
(ISA based JTAG only).

e The JTAG Diagnostic “JTAG Address” must have the same setting assigned to the JTAG device.

If the above conditions are all met and the JTAG is operating properly, then the START/STOP test will
cause the LED on the JTAG card to blink at 0.5 Hz. Click the <Start> button. Thisshould cause the
LED to blink. When you are satisfied that it is operating correctly, click the <Stop> button.

Close the Xag Diagnostic utility by clicking the <Exit> button.

Running an Example Program usng TERMINAL

Each of the Devel opment Packages is supplied with atermina emulator application which can be used
either stand-alone or in conjunction with Code Composer Studio. The terminal emulator application is
asmal, Windows gppl et, which acts as areceptacle for gandard 1/0 requests generated by a target DSP
application. Refer to the“ Support Applets’ section of thisManual for detailed information on the ter-

minal emulator.

Invoke the TERMINAL utility now. If successfully started, termind will display “ Tdker Init OK” inits
client window. If the Taker fails to start, refer to the Troubl eshooting section of thismanual. Iterate this
step until Talker initidizes successfully. You should see awindow similar to the following:

Development Package Manual

37

Installation

[M44 Terminal Emulator - Target 0)9 [=] 3
Fle MWindow DSP Feload Help

Blet

Esit

Select <COFF Download> from the <File> menu, to begin downl oading aprogram to the target DSP.

Thiswill open a dialog box from which you can select atarget DSP program to run. The examples can
be found in the C:\<board directory>\examples\target\ directory:

Laak jr: |@ target =l ﬁl
A4d1 [Dio H
Addd [0 Mot
Ad40 Csd
s Csdie
Aix20 Fit.aut
Dacdd Files. out

File hame: IHe\Io.out Open [:I
Files of type: [COFF Files [+.0UT) =l Cancel |

™ Open as read-only

&

Select HELLO. OQUT fromthefilelist and click <Open> to download and run the classic “Hello Worl d!”
program to thetarget DSP. The terminal emulator should display “Hello World!”, as shown below:

[M44 Terminal Emulator - Target D

Fle Window DSF Reload Help
Hello, World!

Echoing keystrokes. .

If so, closethe“Terminal” program and proceed to running the “ scope” test. Otherwise, refer to the
Troubleshooting section of thismanual for the most frequently asked questions and solutions.

38 Devel opment Package Manual

Testing the Development Package Installation

Running the" Scope"
Note: Thistestisfor all boards except the SBC32.

Bring up the Scope through the “ Start Menu”. For ingance, Start | Programs | <target board> |
Scope.

For PCl-bus-based products:
Inthe".OUT File to Download" box, press the <...> button which will open a dialog box from which
you can select the scope.out file. Thisisfound in the c:\<board directory>\exam-

ples\host\scope\dsp\ directory.

Select scope.out from the file lis and click <Open>. Make sure you have the correct "Target" value
sdected (usudly 0).

Click <Open> on the scope dialog box - thiswill enable the <Start> button.

Press the <Start> button to start the scope. A Sinewave should be displayed.
Press <Stop> when you are done.

For ISA-bus-based products:

The scope should automatically display a sine wave There may be adelay initialy.
To exit the scope, click <Exit> on the scope dial og box.

Proceed to Code Composer Testing, be ow.

Testing the Code Composer Debugger

If you will be running an appli cation which employs standard 1/0 (i.e. most of the || example pro-
grams), start Terminal .exe. (Refer to Running an Example Program using TERMINAL for instruc-
tions) In Terminal, dick Window | Always on Top. Thiswill forcethe Terminal to always show. Note
that Terminal must be launched prior to Code Composer Studio because Terminal physically resetsthe
target DSP board during its initialization, which disruptsthe JTA G hardware used by Code Composer
Studio.

Next, open the Code Composer folder by right-clicking the <Start> button, clicking <Open>, double
clicking <Programs>, and double clicking (opening) the Code Composer Studio folder. Thisshould
open awindow containing iconssimilar to the foll owing:

Development Package Manual

39

Installation

& Code Composer Studio 'CG000 M= E3
J File Edt Miew Go Favortes Help

m B o B

Dacumenta... {EEStudiDE Configuration Reset D550 Setup
....................... Tool Board Lo

|5 abject(z] | ty Camputer o

Double-click on the Code Composer icon “CC Studio” to launch the debugger. You should see awin-
dow similar to the following:

: % /ii_gen6x/CPU_1 - C6200 Code Composer Studio
File Edit View Project Debug Frofiler Option GEL Tools ‘Window Help
EFEIEECEE 5 & % Qioa &K | c=E s [EE A
&
£ -] GEL files
~[Praject
Ay
A
ﬁ
e
#a
&
o
L3S
i
2
& B
INITIALIZING DSP [For Help, press F1 Ln 0000, Col 000 NLIM A

If you do not seethe above window, refer to the Troubl eshooting section of thismanual for the most fre-
guently asked questions and ol utions.

If you do see the above window, load and run the HELLO.OQUT target appli cation as described below
from Zuma Tool set Examples\Target directory. To load, use File | Load Program and to run, use
Debug | Run Free.

Deve opment Package Manual

Troubleshooting Installation Problems

The DSP target application should run, displaying “Hello World!” in the terminal window:

[M44 Terminal Emulator - Target 0 9 [=] B3
File ‘Window DSP Heload Help
Hello, World!

Echoing kegstrokes. ..

You have successfully run your first DSP program from within the Code Composer Studio Source
Debugger environment! Refer to the Code Composer Studio documentation for complete instructions
on how to take advantage of all the featureswithin the debugger software.

Troubleshooting I ngtallation Problems

Most Commonly Asked Questions

This section includes answers to some of the most commonly asked question rel evant to installation and
initial testing. If after troubleshooting, components of the Developer’s Package still do not operate cor-
rectly, contact Innovative I ntegration for technical support.

| already had alicensed copy of the Tl tools, so | omitted them from the Development Package.
Whenever | attempt to compile, assemble or link a program from within Code Composer Studio,
thebuild window shows “Bad command or filename” errors.

Edit your AUTOEXEC. BAT fileto add the directory containing your Tl tool set to your default path, i.e.:

path = c:\windows; c:\windows\system;c:\fltc

Development Package Manual

41

Installation

Code Composer Studiowon't start. It shows a dialog box that says, “ Valid Har dware Key could
not bedetected. Pleaseinsurethehardware key isfastened securely to your parallel port.”

Make sure the Code Composer Studio hardware key is attached properly to theHasp Key. Use the
thumbscrews to securely attach the key to the parallel port. Also, make sure you have the correct hard-
ware key for your board.

Code Composer Studiowon't start. 1t shows a dialog box that says, “ Can't initialize tar get DSP.
Troublewith JTAG controller. Pleaseinsurethel/O port isset properly.

There are several common reasonsfor thiserror. Verify each of the following:

You have properly configured the ISA JTAG debugger board according to the I/O assignment pro-
duced by Windows during the | SA JTAG devicedriver installation and that all jumpers are properly
oriented for communication with your target.

Verify that your JTAG cables are properly connected to the host and DSP target board.

I SA DSP board users: Verify that you have properly configured the DSP target board according to
the I/O and interrupt ass gnments produced by Windows during the DSP board device driver instal -
lation.

Stand-alone DSP board users: Verify that the DSP board ispowered up and the supply voltagesare
correct. If you areusing a serial mouse, change the target number setting in the terminal.ini file
(found in the board’sroot directory).

You may have sdected the incorrect driver for your DSP target within the Code Composer Studio
setup utility. 1f you are usng a multiprocessor target, check the multiprocessor settings aswell.

When us ng the pod-based debugger with an JTAG pod, make surethetarget is set up to provide the
‘C3x H3 clock (see DSP card Hardware Section for details).

Verify that the JTAGDIAG “Access Test” passes. Launch the “JTAG Diagnogic” from the program
folder of the board and click the <Reset> then <Start> button

Check for the proper and most current DLL driver available.

Verify that DLL in beng used is as new as the Innovative Intergration’s website (www.innovative-
dsp.com) verson.

42

Devd opment Package Manual

Troubleshooting Installation Problems

When | attempt to start Code Composer Studio, my PC “hangs’ and won’t respond to the mouse
or keyboard.

If you are using a C3x-based DSP board, insure that the JTAG cable is properly connected between the
debugger board’s C3x JTAG connector and the target DSP board’s JTAG connector.

For dl other targets, insure that the JTAG board clock sdect is configured for OSC and that the on-
board oscillator is seated in its socket.

| havechecked and re-checked the settingsfor my JTAG board and it’s connections to the DSP
target, but Code Composer Studio still won't start.

The ISA/PCI card edge connector on the JTAG board may be dirty. Clean the ISA/PCI card edge con-
nectorsfor the JTAG board using a pencil eraser until the edge connector is free of any film or residue.

| can’t seem to load any of the Code Composer Studio workspaces for the Development Package
example programs.

The project workspaces (* . WGP files) were created for proper execution when the DSP board directory
existsonthe C: \ drive. If you installed your DSP board directory onto another drive, you will haveto
recreate each of the project workspaces. However, it ispossible to edit each of the project make files
(* . MAK), modifying all driveletter designatorsin order to allow them to work on another drive.

Code Composer Studio appearsto operate properly (I can load, execute and step through pro-
grams), but sandard I/0 doesn’t appear on my terminal window when | run the example pro-
grams.

Insure that the TERM NAL applet is configured to communi cate with your target board. For sngle-
board users, thetarget number corresponds to the PC com port being used (target 0 = COM1, target 1 =
COM2, etc.). For all other targets, thetarget number is usually zero. You may need to edit the gpplets
. I NI file (using Notepad) in order to manually adjust the target number. The. | NI fileislocated in
thel | _BQARD directory.

| haveinstalled a PCl-based DSP card and now my PC won’t boot.

You do not have an available, uncommitted IRQ for use by the PCI card. Enter the sysem BIOS setup
and reserve an IRQ for use by the DSP board.

| haveinstalled a PCl-based DSP card and my PC boots. But an | SA adapter card in my system
(network card, etc.), which used to work fine, is no longer operating.

The PCI BIOS has assigned the DSP board an IRQ that was already in use by the ISA board. Enter the
sysem BIOS and reserve an IRQ for use by the DSP board.

Development Package Manual

43

Installation

Our host application isnot Windows-based. We're using DOS, UNIX, OS2, etc. for our host envi-
ronment. How can we develop and debug my tar get application?

Install Code Composer Studio and the T1 tools onto a Windows-based PC and umbilical over to the DSP
board installed in asecond machine that is running under the “foreign” operating system. You will not
be able to run TERMINAL and DOWNL OAD under the foreign OS, but the Windows-based system
can be used to devel op and deliver code to the target DSP over the JTAG link.

| get a“Talker didn't sart!” message when attempting to download to my single-board DSP from

within TERMINAL or DOWNL OAD.

* Insurethat the gpplet is configured to communicate with your target board. For single-board users,
the target number correspondsto the PC com port being used (target 0 = COM1, target 1 = COM 2,
etc.). For al other targets, the target number isusually zero. You may need to edit the applets. | NI

file (usng Notepad) in order to manually adjust the target number. The . | NI fileislocated in the
I 1 _BOARD directory.

* For Stand Aloneboards, verify that the board is getting power and the serial cable iswell seated.
Also, make sure all external reset sources connected to the board are not stopping the card from run-
ning.

* Verify that the jumpers on the card are set to thefactory defaults.
* Check that the COM port in use is enabled at the BIOS level.

* Check that the port is enabled and available from within the Windows Device Manager
We are planning to use Visual Basic for our host application and want to know if we can access
your host DLL functions?

Yes, the DLL functions are accessible with thistool.

After installing a stand-alone boar d, my serial mouse no longer works.

Terminal is using the same target number as your mouse (target 0 = COM1, target 1 = COM2, €etc.).
Change the target number setting inthe TERM NAL. | NI file in the board's directory.

After installing a stand-alone boar d, my computer won’t reboot, | get a keyboard error at boot
up, or Windowshangsat start up.

Your DSP may be stuck in abad state. Turn off your computer. Remove power to the board. Turn on
your computer and wait for windowsto boot (if prompted to sart in safe mode, ignore the message and
do anormal boot). Once windows has started, power up the board.

Devd opment Package Manual

Troubleshooting Installation Problems

| havedownloaded a new driver for my board from you FTP ste How should | ingall it?

Re-run the driver installation as documented earlier in this document. Your old driver will be overwrit-
ten during the install ation.

Code Composer Studio Troubleshooting

If Code Composer Studio did not install or operate properly, it may be helpful to refer to the Code Com-
poser Studio instruction manual for additional information.

Code Composer Studio requires third party device drivers to be instaled along with the executable
applicaion in order to support Innovative Integration’s debugger hardware. Therefore, if these device
drivers did not install properly, Code Composer Studio may need to configure for use with the Innova-
tive Integration DSP board you have purchased before being run.

The Installshield should have dready installed the Code Composer Studio driver for the DSP board.
Although if it had not, then open the Code Composer Studio folder by right-clicking the <Star t> button,
clicking <Open>, double clicking <Programs>, and double clicking (opening) the Code Composer
Studio folder. Then double click on the Setup CCStudio to launch the Code Composer Studio Setup
program seen below.

(Code Composer Setup =[O =]
File Edit Wiew Help
|System Configuration | |A\.fai|ab|e Board/Simulator Types | | |
""" Figen ¥ Impaort & Configuration File
’ .
------- Systern Needs a Board. Click Here JBR: Chwsx %05 (Texas Instruments) - -
) ¥ Install a Device Driver
: CEaxx Simulatorn [Texas Instrurments)
: CExxx EVM [Texasz Instruments)
<] i ol
|Drag a device diiver to the left to add a board to the system. i

Development Package Manual 45

Installation

Next, right click and drag the 1l _Gen6x icon from the “ Avail able Board/Simul ator Types’ columntothe
“ System Configuration” column. Thiswill open the following window.

Board Properties

Board Mame & Data File | Eoard Properties I Processor Configuration I

@ Use generated board data file
" Specify custom board data file

I Browse... |

I | (Ecriecte atentc ards:

Device Driver Location:
|E: S| MDD S Skivdrivershil_genBs. dyvr

Mest > I\J Cancel |

The board name can be change in thiswindow, but it isrecommended that you keep the default name
for clarity. Once you have st the board name, click <Next> to proceed.

HE

Board Properties
Board Mame & Data File Board Properties | Frocessor Configuration I

Yalug
Ox240

Froperty

|Change property value as neceszary in the right column.

Mext » |:I Cancel |

Verify and/or change the board properties1/O port address valuein this screen to the address assigned to
the JTAG by Windows during the JTAG debugger driver software ingallation phase and then click
<Next>. (The Windows assgned JTAG I/O port address can be displayed by the device manager)

46 Devel opment Package Manual

Troubleshooting Installation Problems

Board Properties H
Board Mame & Data File | Board Properties Processor Configuration |

Available Processors: Processors On The Board:

Ky TMS 32006200 Ko CPL_1
k3 BYPASS

Add Multiple |
Remave |

Proceszor Mame:
CPU_2

| dentify processors on your board by selecting a proceszor type from “Available
Proceszors," changing the "'Processor Mame" as required, and then select “Add
Single' or “Add Multiple.'" Fepeat for all proceszors on your board.

Finish [kl Cancel |

Add a single processor to the board by clicking the <Add Single> button and then click <Finish> to
condude.

If thetarget is a multiprocessor DSP card, click the <Add Multiple> and enter processor base namefor
the target hardware as seen below. Refer to the Code Composer Studio manual for more information on
the use of multiprocessor debugging.

Processzor Setup B

Processor Base Mame:

B
Qﬁ [ePU_
<4 Add Single |

— Add Multiple
Maming Convention: Cuantity:
i Mumerical |1— E
(" Alphabetical [2

Processzor Mames:

|[EPU_1 ... CPU_4

DK; I Caticel |

Yy

Please note that the number of processors entered in the scan path lis must be equal to the actud num-
ber of processorsin the emulator scan path. Note also that order of the CPU IDs must match the order
of the CPU’s in the JTAG scan path. This is accomplished by entering the identifiersin what appears to
be reverse order (with cpu_2 before cpu_1 and cpu_3 before cpu_2) in the Processor Ligt:

Development Package Manual 47

Installation

g Code Composer Setup M= E3
File Edit “iew Help
|System Configuration | |A\xai\able Processor Types | | |
B2 My System K THS 32005200 ion Fi
1 i Impor & Lonfiguration File
= I BYPASS b Impart a Configuration File

b Install & Device Driver

To &dd Another Processar, (
£y To Add Another Board, Click Here

4 | i

|Drag a processzor o the left to add ta the curently-selected board. &

The Code Composer Studio Setup screen should ook similar to the one above. Save the setup setting
and exit the Code Composer Studio setup screen. Code Composer Studio debugger installation is now
compl eted.

Verify Environment Variables

The Il Zuma package makes use of DOS environment variablesin order to locate header files, code gen-
eration executables, etc. The installation process sets these variables to the settings shown in the
ReadMefileat thetime of installation. Be sureto verify the Environment variable settings, especially if
you haveinstalled the TI Compiler/Assembler after the board, before trying to use the board. Note:
upgrading from previous versions or when mixing devel opment components from |1 and other vendors,
problems can arise.

To verify the settings, go to a DOS Prompt and type “SET”. Thiswill write to the screen the variables
and their values. Check these values against the ReadMe file. The ReadM e file can be found in the root
of the board directory —i.e. C:\<board directory>\ReadMe.txt

To modify the variables under Window 9x, reset these variablesin your AUTOEXEC. BAT file. Under
WInNNT, set these variables by opening Control Panel | System Icon | Environment tab. Note: place

Devd opment Package Manual

Multiple Board Support

all entries under System Variables: not under User variables section. Double click the variable nameto
modify: edit box (i.e. c_dir), then enter value of environment variablein Value: edit box (i.e. c:\fltc).
After finishing an entry press ‘' Set’ button to add it to current settings. Note, unlike Win95/Win98, after
making changes to environment variable settings they take effect immediately, you do not have to
reboot.

Below is a description of the Environment variables that are modified by the installation of an Innova
tive Integration Board installation:

DOS
Environment
Variable Name Products Affected Description
II_BOARD CodeWright/Peripheral Board specific library directory
Libraries Directory - Used for infrastructure
C6x_C _DIR All TI C Compilers Code generation tools directory
All'll peripheral libraries - Search path for the compiler
C6x_A_DIR All TI Assemblers Code generation tools directory
(optional) - Search path for the assembler
D_SRC All Debugger products Optiona JTAG Debug Directory
- Search path for the debugger
D_DIR All Tl Debuggers Optiona JTAG Debug Directory
- Path to the executable for the
debugger
PATH All Il products Dos search path (new entries are
All CompilersAssemblers | 2dded to the path)
Multiple Board Support

Multiple target boards of the same type may be ingalled in the same system with full development soft-
ware support (the only exception being the JTAG debugging support under Code Composer Studio for
multiple‘ C3x targets. Sincethe modified JTAG standard used on the ‘ C3x processors does not support
multi ple processor debugging, Code Composer Studio may be used with only one‘ C3x target at atime).
Multiple copies of the support applications may be run simultaneously, each communicating with differ-
ent targets, to provide parallel support for multiple target boards. Follow the instructions bel ow to set
up support for more than one target:

Development Package Manual

49

Installation

1. Go through the normal installation of the support software per the instructions above.

2. For each target board, make a Windows shortcut icon for each application, which must be used
simultaneously. For example, if the system has three target boards instadled and the user wishesto
use the COFF downloader and terminal emulators independently with each board. Then makethree
shortcuts each for the two applications and label them “ COFF Downloader Target 07, “ COFF Down-
loader Target 1", etc. To make a shortcut icon, open the “My Computer” desktop icon and open the
drive and installation directory where the devd opment toolswereinstalled. Right click onthe appli-
cation for which the shortcut will be made, and select “Create Shortcut”. A new icon will appear in
the folder window, |abeled “ Shortcut to [APPLICATION NAME]”. Renamethe icon appropriately
by right clicking and selecting the “ Rename” menu entry, then entering a new board-specific name,
such as “COFF Downloader for Board#1”. Optionally, the shortcut may be dragged onto the desk-
top and the file folder closed to clear display space.

3. Oncethe shortcut copies have been made for all instances of the application(s) for each target, the
shortcuts must be customized to point to their respective target boards. This isaccomplished by
adding command line switchesto the Properties dialog box for each shortcut. Right click on each
shortcut and select the “ Properties’ entry to open the Properties dialog box. Select the* Shortcut”
tab and edit the “ Target” text box. Add the target number override switch (-t) followed by a space
and the target number of the board with which this instance of the program will communicate. To
find out each board's target number, use the FI ND utility (described below). For example, if the sys-
tem has two targets installed, one at target number O and one at target number 1, the shortcut for the
first board’s COFF downloader would have a*“ Target” entry of:

[install directory]\DOWNLOAD.EXE 0
and the second board’s COFF downloader shortcut would have an entry of:

[install directory]\DOWNLOAD.EXE -t 1

Additional switches may be specified in the “Target” text box to further modify the application’s
individual behaviors. See the support application’s descriptions below for complete details on the
switches available for each application.

Note: Thecommand line switches, specified in the shortcut properties box, act asoverrides to the
default behavior selected in the configuration utility. Any switches NOT specified in the shortcut prop-
erties dial og box will cause the gpplications to revert to the global configuration selected in the configu-
ration program. For example, if the user selects the Automatic Download feature in the configuration
utility and specifiesafilename, then dl shortcuts created for the COFF downloader will automatically
download that file on gart-up. If one of the shortcuts specifies a-d[FILENAME] switch inits property
box, then that shortcut will download the specified filename on start-up, rather than the default applica-
tion selected in the configuration utility.

50

Devd opment Package Manual

Uninstall Process

Uninstall Process

The uninstallation process is quite simple, and it is different for Win95/Win98 than for Windows NT.

Windows 95/Windows 98 Uninstallation

The uninstallation process conssts of using thetarget board uninstall utility to remove the software and
editing the autoexec.bat file to remove environment variabl es.

To uninstall the software, right-click the <Start> button, dicking <Open>, double-clicking <Pro-
grams>, and doubl e-clicking the Folder associated with the DSP board. This should open a window
containing icons similar to the following:

& MGx DSP Board M=l &
J File Edt “iew Go Favortez Help

S A B W
Coffdump Dovanload Ingtall HASP JTAG
Diagnostic
b 2 A B0 W
FLCI Scope Terminal ninztall Unirgtall bBx Wigwer
Configuration HasSF
[12 object(s] |4.33KE | =0 My Computer v

You will firg double-click the Uninstall HA SP icon and the following screen will appear. Click <OK>.

Aladdin Device Drver Installation Utility for Win32

The % indows 35/38 Device Diver was removed successiully,
I arder for the procedure to take effect you must restart yaur spstem.

Development Package Manual

Installation

You will then double-click the uninstall <target boar d> icon and you will be asked if you really want
to remove the <target board> DSP board and all of its components. Click <Yes>.

Confirm File Deletion

@ Are you sure you want ko completely remove MBx DSF Board' and all of itz components?

The program and its components will be removed and the screen below will be shown.

Remove Programs From Your Computer

unlnztallShicld will remove the zoftware ME= DSP Board'
frarm pour computer. Pleaze wait while each of the fallowing
components iz removed...

Shared program files...

Standard program files...

Falder items...

Program folders...

Frogram directories...

= %" " "R N

Frograrn reqisty entries. ..

Uninztall completed. Some elements could not be
removed. Yaou should manually remove items related to
the application.

ok

When it isdone, it will let you know if any problems occurred. If there was a problem, view the
" Details" to seewhat was not removed. You should then manually remove any files that were not auto-
matically deleted.

Next, you should remove environment variables that were added to the autoexec.bat. Remove the fol-
lowing variables "<target board>_a dir", "d_src", and"ii_board". Now remove any board related
paths from the "<target board>_c dir" and "path” variables.

The JTAG device must be remove from the Device Manager as follows

52 Deve opment Package Manual

Uninstall Process

From the Contr ol Panel, double-clicking on the System icon. Click on the Device Manager tab. Find

the Other directory, and click the board you wish to uningall (JTAG Controller). Then click the
<Remove> button as shown below.

System Properties HE

General Device Manager | Hardwsare: Profilesl Performancel

o Yiew devices by tpe " View devices by connection

Computer =
-5} COROM

- Disk drives

@ Dizplay adapters

2 Floppy disk contrallers
-2y Hard disk contrallers
-8 Keyboard

= b oritors

Ty Mouse

< Multi-function adapters
[#-EB Metwork adapters
1y Other

< MB2 Supercontraller

E

892 ~ci Jtag Debugger Card

g Parts [COM & LPT] —

[#]- Sound, video and game contrallers

o v e j

Properties | Refresh | Remove I\l Frint... |

Confirm the deviceremova by clicking the <OK> button and then restart your computer system for the
changes to take affect.

Confirm Device Removal EHE

.\> PciJtag Debugger Card

YW arhing: Y'ou are about to remove this device from waur spstem.

Cancel |

Note: The Code Composer Studio hasnot been uninstaled. To uninstall this software refer to the unin-
stallation ingructionsin the Code Composer Studio manual.

Development Package Manual

Installation

Windows NT Uninstallation

The uninstdlation process consists of using the “ Add/Remove’ windows utility to remove the software
and using the regedit utility to remove environment variables.

First, open the “ Add/Remove Programs’ utility in the Control Panel. Then highlight the board and
click <Add/Remove>.

AddfRemove Programz Properties EE

Install/Uninstall | windows NT Setup |

@ Toinztall a new program from a floppy disk or CD-RORM
L=

drive, click [nstall
Inztall...

The fallawing safbware can be automatically removed by
Windows. To remove a program or bo modify itz inztalled
companents, zelect it from the list and click
Add/Remove.

IngtallShield 5.1 Profezsional Edition

Add/Bemove. |

(] | Cancel | Anpl |

You will then be asked if you really want to remove this program. Click <Yes>. Next, the program will
be removed. When it is done, it will let you know if any problems occurred. If there was a problem,
view the “Details’ to seewhat was not removed. You should manually remove any files that were not
removed.

Next, you should remove portions of the environment variables that were added. Remove any boar d
related paths from the “ <target board>_c_dir” and “path” variables For instance, if the <target
board>_c dir currently has“c:\<target board>;c:\<target board>\include\target;c:\fltc” asit’s value,
remove the “c:\<target board>;c:\<target board>\include\target;” portion. To accomplish this, open
Control Panel | System Icon | Environment tab.

Devd opment Package Manual

CHAPTER 3 |ntegrated Devel opment
Environment

The C Devel oper’s Package consists of several softwaretools, integrated to work
together to provide a complete DSP design environment for Innovative Integration
DSP boards. T his section discusses the tools included in the devel opment package
and gives descriptions of each appletsfeatures and use. A brief introduction is
given regarding the software programs provided and their use within the Devd-
oper’sPackage Theuser isreferred to theindividual manual s accompanying these
software productsfor compl ete documentati on.

The Texas I nstruments C Compiler Tool set

The C compiler supplied with the Devel oper’s Package is the Texas Instruments
(T.I1.) Floating Point C Compiler toolset for the DSP target board. The compiler
runs under Windows as a cross compil er, generating executable applicationsfor the
DSP processor which are then downl oaded and executed using the other toolsin the
Developer’s Package. The compiler is ANSI C compatible and supports nearly all
standard C functions. Additional libraries provided with the Deve oper’s Sysgem
include C standard I/O and peripheral driversfor the A/D, D/A, bit-1/O and timers.
Assembly language may also be mixed with C code for higher performance where
required.

Typical application programswill consist of one or more C (. C), header (. H), and
Assembly language (. ASM) source files, asneeded. Additionally, target program
generation requires use of alinker command file (. CVD) which specifies the mem-
ory map for the target and optionally includes commands defining the librariesto
be linked into the final application.

Development Package Manual 55

Integrated Development Environment

Users of the Code Composer Studio editor/debugger will also employ make (. MAK), workspace (. W5P)
and specid Code Composer-specific script files(. GEL). The example programs included in the Devel-
oper’s Package illugtrate the use of these files also and give example files to use as abasisfor cusgom
DSP applications.

C Compiler Toolset Usage

The C compiler may be run directly from a DOS Prompt window under Windows 95/98/NT as
described in the TI toolset documentation. Also included in the installation directory are batch files use-
ful for manually rebuilding applications programs within the DOS environment. COVPI LE. BAT and
ASSEMBLE. BAT are batch fileswhich will re-compile/reassemble a C or Assembly sourcefile (respec-
tively) specified as atarget parameter to these batch files. The LI NK. BAT will invoke the TI Linker to
link several object modules to create atarget executable (. OQUT) file, consuming a linker command file
(. CVD) as a parameter.

Code Composer Sudio

Code Composer Studio is aflexible, high-performance, integrated code generation environment devel-
oped by Texas Ingruments and bundled into the Innovative Integration Zumatoolset. For complete
documentation to the features of Code Composer Studio package, refer to the accompanying Code
Composer Studio Manual provided. If the user wishesto compile outside of Code Composer Studio (or
has not purchased the package), these make filesmay be used from the DOS command line to rebuild
individual project files or the entire target file set.

Editor

Code Composer Studio supports code editing and emulates the most popular editing packages (CUA,
etc.). Code Composer Studio isaWindow editor. Custom DSP code devel opment can take place
entirely within the Code Composer Studio environment using its project management tools to place
source files, libraries and linker command filesinto projects (.MAK) in order to build executables. The
exampl e programs incuded in the Devel oper’s Package each have a Code Composer project file

(- MAK) associated with them which may be used to re-compil e the example.

Debugger

Code Composer Studio is a software program for high-level TI C and Assembly L anguage debugging
which supports high-performance, JTAG or MPSD-based hardware assisted debugging directly on the
target DSP to gain access to the internal register set, peripherals, and bus of the target board in order to
load, run, and debug applications. Also integrated into the Code Composer Studio software package is
a code management subsystem for editing files as well as creating and compiling D SP projects.

56

Devd opment Package Manual

CHAPTER 4

Qupport Applets

The Devel oper’s Package includes four support applications supporting general
DSP devel opment: thetermina emulator (TERM NAL. EXE), the COFF file down-
loader (DOWNLCOAD. EXE), the COFF file display utility (COFFDUMP. EXE) and
the FLASH prom programming facility (BURN. EXE). This section describes the
functionality of each of the applications and their use within the devel opment sys-
tem.

The functions provided by each of the applications may be configured through
menu selections availabl e within each of the applets themselves. Generally, param-
eters governing the behavior of each applet are stored in program-specific . | NI
files, located in the directory from which the applet isinvoked. See the discussion
below for applet-specific parameters.

The Terminal Emulator

The terminal emulator providesa C language-compatible, standard 1/0 terminal
emulation facility for interacting with the st di o library running on the DSP pro-
cessor. Display /O callssuchasprintf(),scanf(),andgetchar () are
routed between the DSP target and the Hogt terminal emulator applet where ASCI|
output data is presented to the user via a terminal emulation window and host key-
board input data is transmitted back to the DSP. The terminal emulator works
almost identically to console-mode terminals common in DOS and Unix sysems,
and provides an excellent means of accessing target program data or providing a
simple user interface to control target application operation.

Development Package Manual

57

Support Applets

[SBC32 Terminal Emulator - Target 0
Eile Wi Heload| Help
Talker

FIGURE 4. Terminal Emulator Applet

The terminal emulator is sraghtforward to use. The emulator will respond to sdio calls automatically
from the target DSP card and should be running before the DSP application isexecuted in order for the
program run to proceed normally. DSP program execution will be halted automaticdly at thefirst stdio
library call if the terminal emulator isnot executing when the DSP application is run, since standard 1/0O
uses hardware handshaking, except on stand-ad one SBC targets. stdio output isautomatically printed to
the current cursor location (with wraparound and scrolling), and console keyboard input will also be
displayed as it isechoed back from the target.

The terminal emulator dso supports Windows file 1/0 usng the library routinesf open() ,
fclose(),fread(),fwite(),fseek() andffl ush(). Refertothe Appendix for proto-
types and usage of these library functions astheir usage is not 100% ANSI compliant.

Terminal Emulator Menu Commands. The terminal emulator provides severa menus of commands
for customizing itsfunctionality. The following is a description of each menu entry available in the ter-
minal emulator, and itseffects

= SBC32 Terminal Emulator - Target 0

[window DSP Feload Help
COFF Download...
Plot

Exit

FIGURE 5. Terminal Emulator File Menu

File Menu. File | COFF Download - provides for COFF program downl oads from within the terminal
emulator. When selected, afile requester dial og box isopened and the pathname to the COFF filename
to be downloaded is selected by the user. Clicking “Open” inthefile requester once a filename has been
sdected will cause the requester to close and the file to be downloaded to the target and executed.
Clicking “Cancd” will abort thefile selection and close the requester with no download taking place.

58

Devd opment Package Manual

The Terminal Emulator

Q62 Users: Terminal supports downloading of . QUT or multi-processor . MPOfiles. . MPOfiles pro-
vide a means of downloading separate . OUT filesto multiple processors simultaneoudy, which greatly
simplifies the task of synchronizing execution in a multi-processor environment.

NOTE: File| COFF Download physicdly resets the target DSP (in order to initiate the target Talker
program) prior to the download. When using the terminal emulator in conjunction with the Code Com-
poser debugger, use Code ComposersFile | Load Program facility to downl oad executabl e code to the
target rather than the terminal emulaor’s download facility, 9 nce the Code Composer mechanism does
not physically reset the target during the download, it is not reliant on the target Talker to perform the
downl oad.

DSP-DLL

@ Talker didr't start
ok |

FIGURE 6. Diagnogtic Received when Target DSP isHalted.

If you attempt to download using the COFF Download menu within the termind emulator while using
Code Composer, you may receivethe diagnostic dia og box, which indicates that Code Composer has
halted the target processor viathe JTAG hardware link. Whilein this halted state, the terminal emulator
cannot invoke the Ta ker program on the target DSPin order to perform the software download. To cor-
rect this problem, execute the Debug | Run Free menu command from within Code Composer to release
the DSP from JTAG control. Afterwards, clear the terminal emulator error message did ogs and retry
the terminal emulator COFF Download.

File | Plot — opens the Plot dialog box, similar to the one listed below.

Plot Setup

32

Significant bits:

Cancel |
Feset Settings |

Right-shift bits: 0
Header samples:

Decimate samples: |1

Sample Fate: 0

1T

Curve Fit

I IEEE Floating Paint " FFT
V¥ Tl Flaating Paint
™ Signed Integer ™ % Plat

[iata File | |- plat. bin

FIGURE 7. Terminal Emulator Plot Menu Dialog Box.

Development Package Manual

59

Support Applets

The Plot didog specifies all of the avail able options for plotting binary datain Host PC files. Binary
data files, usually created by target DSP programs using thef open() andf wri t e() functions, may
contain datain awide variety of formats which may be plotted in awindow from within this dialog box.

Each time data is plotted in the plot window, tatistics on the plotted graph are calculated. These statis-
tics are reported in the graph window. The statigtics incude:

Min displaysthe minimum value in the data set.

Max displays the maximum value in the data set.

Delta displays the difference between the minimum and maximum values in the data set.
Sdev displays the standard deviaion of the data set.

Mean displays the mean value of the data set.

The terminal emulator is capable of plotting filesin which binary data has been stored in awidevariety
of formats. The default data file format is successive 32-hit (four-byte) val ues each representing a sin-
gle Tl floating point Y amplitudevalue. X axisdataisnot containedinthefileandtheY axisamplitude
data is plotted against an implied X axisof successively incrementing sample # va ues, starting at zero.

Each of the avail able plot optionsis detailed b ow.

Edit Boxes. Sgnificant Bits specifies the number of significant bitsin each data value stored in the
data file. The number of bits may range from oneto thirty-one. This parameter allowsyou to plot data
gathered from a device at virtually any resolution. For example, if datais accumul ated from a 12-bit A/
D converter and sored into a binary data file from the target DSP, it would be stored on disk as 16-bit
byte-pairs. When plotting this data, with significant bits set to 12, the fallow upper four bits of each 16-
bit ssmplein the datafilewill be ignored during the data plotting operation.

This parameter indirectly specifiesthe size of each data sample withinthe datafile, aswell. The size of
each sample (in bytes) isgiven by the equation:

Sample sze = (dgnificant bits+ 7) / 8

The samplesize is awaysthe truncated integer result of thisformula. Use of the term sample through-
out the rest of this section refers to clusters of bytes within the datafile of size samplesize.

Shifted specifies the number of bits to shift each data sample stored in the data file, prior to plotting.
The number of bits may range from negative thirty-one to positivethirty-one. This parameter allows
you to plot data gathered from a device when the output lines of the device are not mapped onto the
low-order lines of the data bus. For example, on some of Innovative Integration’s DSP boards, a 12-bit
A/D is mapped onto data bus bits 15 though 4 rather than on bits 11 through 0. If thisdatawere plotted
without modification, the data would erroneously range from —32767 to +32768 rather than the actual
12-bit A/D range of —2047 to + 2048. By specifying a Shifted parameter of 4, each data sample
extracted from the data file would be right-shifted four bits prior to plotting to compensate for this
effect.

60

Devd opment Package Manual

The Terminal Emulator

Decimate specifiesthe number of file data points to be skipped between plotted data samples. This
optionis useful when dealing with adatafile containing more than one sample st or in instances where
more data is contained in the file than need be plotted. This field must contain a val ue greater than or
equd toone. A value of one specifiesthat no data should be skipped; aval ue of two specifiesthat every
other data sample should be discarded, etc.

Header specifies the number of file data samples to be skipped at the beginning of the data file before
extracting datato beplotted. Thisoption is used to skip irrelevant data appearing at the beginning of a
data file.

Note: Combinations of Deci mate and Header can be used to view individual, 16-bit channels of data
acquired as 32-bit pairs on certain DSP boards. For example, the PC31 features two A/D channels, A
and B. The A channel is mapped onto the upper 16-bits of the 32-bit data bus while the B channel is
mapped to the lower 16-bits of the bus. If this data were written to a data file as 32-bit data, The Deci-
mate parameter could be set to 2to allow plotting of every other sample in the file (all of the A channel
data). Further, the Header parameter could be set to 1 in conjunction with the above D ecimate setting to
allow skipping of the first sample in the file in order to plot of dl of the B channel datain thefile.

Fit specifies that the plotted data should be curvefit to the specified order, ranging from zero to five,
using a least-squares regression technique. The curvefit datais plotted atop the actud datain red. The
correlation coefficient of the fit and the curvefit equation are displayed in the graph window whenever
this parameter is greater than zero.

Data File indicates that name of the file containing the data to be plotted.

Radio Buttons. |EEE —When checked, indicates that each sample in the datafile is stored in 32-bit
|EEE-754 fl oating-point format. When enabled, the Significant Bits and Shifted fields are ignored.

Tl — When checked, indicates that each sample in the datafileis stored in 32-bit TMS320 T1 native
floating-point format. When enabled, the Significant Bits and Shifted fields are ignored. Thisisthe
default data mode.

Sgned —When checked, indicatesthat each data sample in the data file is signed integer data. When
enabled, the Significant Bitsand Shifted fields are observed.

NOTE: When IEEE, Tl and Sgned are unchecked, the data is assumed to have been sored in the data
fileas unsigned integer data.

XY —When checked, indicates that data samples have been stored in the datafile as X-Y (distance,
amplitude) pairs rather than in the default data format. In the default format, only the Y (amplitude)
dataisstored in thefile and it is plotted against an implied, incrementing “sample number” X. Inthe
XY mode, samplesare parsed from the file and plotted in pairs. Thereforein this mode, half as many
points are plotted from the data file.

FFT —When checked, indicates that a Fast Fourier Transform should be applied to the datain the data
fileprior to plotting.

File | Exit - exits the terminal emulaor program.

Development Package Manual 61

Support Applets

= SBC32 Terminal Emulator - Target 0

DSP Beload Help
LClear Screen
Besat
Alwaps On Top

v Ouiet Made
stdia disabled

FIGURE 8. Terminal Emulator Window Menu

* Window | Clear Screen - dears the terminal emulation screen and resets the current cursor position
to the top left hand corner.

* Window | Reset - causes the terminal emulator to reset all internd stdio processing and clears the
screen. If processing iscurrently hdted (viathe File | stdio Disabled command), it isthen re-
enabled. The Reset command is useful when the terminal emulator needs to be initialized prior to
running a new DSP application on thetarget. Thiscan become necessary because the emulator uses
multi-character control codesto implement cursor movement and screen control functionality. Itis
also possible to halt DSP processing (viathe JTAG debugger interface) in the middle of a stdio call,
which is processing a multi-character sequence. |If the program is not continued, this causesthe ter-
minal emulator to misinterpret subsequent, new stdio activity. Terminal emulation should always be
resdt, either viathis menu entry or by callingthest di o_r eset () function within the new appli-
cation, before new stdio activity is atempted.

* Window | gdio Disabled - atoggling command which allows the user to temporarily disable stdio
emulation. Thiswill causethe DSP program to halt at the next stdio library call, and remain paused
until stdio processing is again re-enabled by selecting this menu entry. stdio activity processing is
halted while the menu entry is checked.

* Window | Always On Top - atoggling command which will cause the termind emulator to float
above other windows on the desktop. Thisis useful when running sdio-based code from within the
Code Composer environment, wherethe terminal needs to bevisible at all times. The terminal will
remain aop other windows when this entry is checked. Select the entry again to uncheck and allow
the terminal emulator window to be obscured by other windows.

* Window | Quiet Mode — Disables verbose error and diagnosti c messages during terminal execution.
DSP Menu
* DSP|Reset - causes the termina emulator to momentarily assert the target’s physicd reset pin,

bringing the target board into a cold-start, initialized condition.

* DSP|Interrupt - causestheterminal emulator to trigger atarget mailbox interrupt using the test code
of 0x80 asthe signal value. Helpful during testing of target interrupt handlers.

Devd opment Package Manual

The Terminal Emulator

Reload Menu

* Rdoad - Causes the terminal emulator to re-download and restart the last COFF application previ-
ously selected with the File | COFF Download command.

Help Menu

* About - presents program copyright and version information plus information pertaining to the use
of Host resources by the target DSP board.

Terminal Emulator Command Line Switches. The termind emulator also provides thefollowing
command line switchesto further modify program behavior. The switches must be supplied viathe
command line or within Windows shortcut properti es (see the I ngtall ation section for more informa-
tion), and will override the default behavior of the applet.

e -tX- addressselector switch, which dlows the user to force theterminal emulator to interact with a
specified target. Thisswitchis particularly useful in multi-board instal lations to create instances of
the emulator for targets other than target 0. Seethe Ingallation section for more information on
multi-board instalations. The X parameter specifiesthe logical target number with which to com-
municate. NOTE: For single-board targets, specify target 0 for boards connected viaCOM 1 and tar-
get 1 for boards connected via COM 2.

» -ffilename - address selector switch, which allowsthe user to force the terminal emulator to down-
load the specified fil e to the target DSP board, as soon as the terminal emulator isloaded. This
switch is particularly ussful in situations where the terminal emulator is*“shelled to” from within an
other Host applications to facilitate the automatic execution of target applications employing stan-
dard I/0.

Development Package Manual

63

The COFF File Downloader

The COFF downloader utility provides users with the capability to download and execute COFF files
generated by the C compiler or Hypersignal toolsets. This allows users to distribute executabl e applica-
tions independent of the DSP development tools.

B COFF Dump Utility [-[o]=]
JREY indow

Exit

FIGURE 9. The Coff File Downloader Applet

The COFF downloader is smple to use. Double click on the COFF Downloader icon and the program
will start and will open a small window with two menu entries, File and Window. To download an
applicaion, dick on File | Download. Thiswill present afile requester dialog box containing alist of
suitable COFF files (. OUT) which can be downloaded. Select the desired target executable and click
OK to proceed. Click Cancel to abort the download command without selecting a filename.

Once afileis sdected, the target will be reset-cycled (to restart itstalker), the program will be down-
loaded and the application launched on the DSP. |If any errors are encountered during the download or
the downl oad fail s to succeed for any reason, an error message box will gppear. Typical reasons for fail-
ure include improper file sel ections (anonexigent or non-COFF format file was sel ected for download)
or errorsin hardware or oftwareinstallation. If repeated errors are noted, proceed to the Ingtallation
Troubleshooting section below.

The COFF downl oader provides for automated downl oads for use in Stuationswhere a single applica-
tion needs to be downloaded and run on the target each time the system isbrought up. This can be valu-
able when placed in the Windows Start-up Folder to automatically download a specific DSP program
each time Windows is retarted.

Q62 Users. Download supports downloading of . OQUT or multi-processor . MPOfiles. . MPOfilespro-
vide a means of downloading separate . OUT filesto multiple processors simultaneoudy, which greatly
simplifies the task of synchronizing execution in a multi-processor environment.

The File | Exit menu selection will terminate the download gpplication.

COFF File Downloader Menu Commands. The following is abrief description of commands avail-
able from the COFF Downl oader menus:

File Menu

* File| COFF Download - providesfor COFF program downloads from within the termina emul ator.
When selected, afile requester dialog box is opened and the pathname to the COFF filename to be
downloaded is selected by the user. Clicking “Open” in the file requester once afilename has been
selected will cause the requester to close and the file to be downl oaded to thetarget and executed.

Devd opment Package Manual

The COFF File Downloader

Clicking “ Cancel” will abort the file sel ection and d ose the requester with no downl oad taking
place

NOTE: File| COFF Download physically resetsthetarget DSP (in order toinitiate the target Talker
program) prior to thedownload. When using the terminal emulator in conjunction with the Code
Composer debugger, use Code Composers File | Load Program facility to download executable code
to the target rather than the terminal emulators download facility, since the Code Composer mecha
nism does not physically reset the target during the download and isnot reliant on thetarget Talker
to perform the download.

* File| DSP Reset - causesthe terminal emulator to momentarily assert the target’s physicd reset pin,
bringing the target board into a cold-start, initialized condition.

* File| Exit - exits theterminal emulator program.

Window Menu

* Window | Quiet Mode — Disables verbose error and diagnostic messages during terminal execution.

* Window | About - presents program copyright and version information.

Reload Menu

* Rdoad - Causes the terminal emulator to re-download and restart the last COFF application previ-
ously selected with the File | COFF Download command.

COFF File Downloader Command Line Switches. The COFF Downloader also provides the foll ow-
ing command line switches to further modify program behavior. These switches must be used in Win-
dows 95/NT shortcut icons (see the I nstallation section for more information), and will override the
same sd ection made in the configuration utility.

* -tX-target number selector switch, which allows the user to force the terminal emulator to interact
with the specified target. This switchis particularly useful in multi-board installations. See the
I nstallation section for more information on multi-board instalations. The X parameter specifiesthe
logical target number with which to communicate. For single-board targets, specify target O (zero)
for boards connected via coml and target 1 (one) for boards connected via com2.

* -q - force quiet mode switch, which causes the terminal emulator to omit non-fatal warning mes-
sages. Fatal errors are gill presented in message boxes.

* -dpathname - cause the downloader to automatically download the named file. Complete path and
filename mug be given (asinc: \ shc32cc\ hel | 0. out).

Development Package Manual

65

The COFF File Dump Utility

The COFF downloader utility provides users with the capability to generate a report detailing the mem-
ory usage of target DSP programs generated using the T1 tool set.

= COFF Dump Utility HE B
File ‘window
Deady!

FIGURE 10. The COFF Dump Utility

COFFDUNP. EXE parsesthrough COFF files stored in files on the hard disk and ascertains the complete
memory consumption by the DSP program. Memory usage for each of the sections defined in the appli-
cations command file are tabularized and the results are written to the Windows NotePad scratch buffer.
If desired, Notepad can then be used to write the data to disk or to aprinter.

B Test.Ist - Notepad [-[o]=]
File Edt Seach Help
Dump of C:\SEAGATE\Examples\Target\Test.out : =

FILE HEADER INFORHATION:

File magic number =93

Humber of sections = 9

Date and time stamp = (GMT) Sun Jun 22 21:25:28 1997

Relocation information stripped from file
OPTIONAL FILE HEADER IHFORMATION:

Magic number is 188
Tool version number is 4.78

.text (Executable code) size: 162fh words
.data (Initialized data) size: B8h words
.bss (Uninitialized data) size: 2¢5h words

Program entry point is: 98135fh
Initialized data starts at: 9868888h
Text section starts at: 988886h

SECTION HEADER IMFORMATION:

BL_vec starts at . length . contains initialized data.
.text starts at 90988886h, length B8888162Fh, contains executable code.
.data starts at . length . contains initialized data.

.cinit starts at @@89@81e2fh, length 888881e%h, contains initialized data.

.const starts at 808982818h, length B8888855bh, contains initialized data.

.stack starts at 90982573h, length 00000888h, contains uninitialized data.
.bss starts at @09682d73h, length 9008882c5h, contains uninitialized data.
ram starts at @087fe@Bh, length 900000886h, a dumny section.

.onchip starts at @887fedBh, length 90088812h, contains initialized data.

la o€

FIGURE 11. COFF Dump Utility Output.

COFF Dump Utility Menu Commands. The following is a brief description of commands available
from the COFF Downloader menus:

66 Devel opment Package Manual

The COFF File Dump Utility

File Menu

* File| Dump — Involves the sandard Windows file sd ector window for COFF output files (. OUT).
Parses through selected file and writes diagnostic dump of contents of executable image to NotePad
scratch buffer.

* File| Exit - exits the dump utility program.

Window Menu

* Window | About - presents program copyright and version information.

Development Package Manual

67

68

Devd opment Package Manual

CHAPTER 5

Devdoping Target Code

Introduction

The Innovative Integration (1.1.) Zuma Tool set allows users of 1.1. DSP processor
boards to devel op compl ete executabl e gpplications suitable for use on the target
platform. The environment suite consigts of the TI Optimizing C Compiler,
Assembler and Linker, the Code Composer debugger and code authoring environ-
ment aswell as 1.1.’s cusom Windows appl ets (such asthe TERM NAL. EXE termi-
nal emulator).

Code Composer Studio is the default package used to automate executable build
operations within Innovatives Zuma Toolsets, simplifying the edit-compile-test
cyde. Sourceis edited, compiled, and built within Code Composer Studio, then
downloaded to the target and tested within either the Code Composer Studio debug-
ger or viathe Zumatermind emulator.

On C6x platforms, such as I nnovatives M6x, SBC6x and Quatro6x, Code Com-
poser Studio may be used for both code authoring and code debugging. Details of
congructing projects for use on Innovative DSP platforms usng Studio are pro-
vided in this chapter.

Do not confuse the creation of target applications (code running on the target DSP
processor) with the creation of host applications (code running on the host plat-
form). The Tl tools generate code for the TI DSP processors, and are a separate
tool set from that needed to create applicationsfor the host platform (which would
cong st of some native compiler for the host processor, such as Microsoft’s Visual
C++ or Borland Builder C++ for IBM compatibles). To create a completely turn-

Development Package Manual

69

Developing Target Code

key goplication with custom target and host software, two programs must be written for two separate
compilers. Whilel.l. supportsthe use of Microsoft C/C++ for generation of host applications under
Windows with sampl e applications and libraries, we do not supply the host tools as part of the Develop-
ment Environment. For more information on creating host applications, see the section in this manual
on host code development.

This section suppliesinformation on the use of the development environment in creating custom or
semicustom target DSP software. 1t isnot intended asa primer on the C language. For information on
C language basics, consult one of the C primer books avail able at your local bookstore. The definitive
reference to the C languageis The C Programming L anguage, by B. Kernighan and D. Ritchie (Prentice
Hall. Englewood Cliffs NJ. 1988).

Componentsof Target Code (.c, .asm, .cmd)

In general, DSP applicationswrittenin Tl C require at least two files: a. ¢ file (or “source” file) con-
taining the C source code for the application, and a. cd file (or “linker command” file) which con-
tains the target-specific build data needed by the linker. Theremay also be one or more. asm
assembler source files, if the user has coded any portions of the application in assembly language.

Edit-Compile-Test Cycle using Code Composer Studio

Nearly every computer programming effort can be broken down into athree step cycle commonly
known as the edit-compile-test cycle. Each iteration of the cycle involves editing the source (either to
createthe original code or modify exigting code), followed by compiling (which compiles the source
and creates, or builds, the executable object file), and finally downloading and testing theresult to seeif
it functionsin the desired fashion.

When using the Code Composer Studio, these stages of the cycle are accomplished entirely within the
Studio integrated environment. The project features of Code Composer Studio support the project and
component file editing and compilation stages, along with allowing the executabl e result to be down-
loaded and tested on the target hardware.

A Smple Code Composer Studio Project

The following sequence illustrates the creation of a project to buildthe“Hel | o Wor | d! " program
from within Code Composer Studio.

70

Devd opment Package Manual

A Simple Code Composer Studio Project

First, start Code Composer Studio. Select Project | New from the Project menu and you will see the fol-
lowing dialog:

Save Hew Project As EE
Save in: I@ bin j gl
File name: [Hello.mak Save |
Save as type: I"_mak j Carcsl |

g

FIGURE 12. Creating a New Project in Code Composer Studio

Browse to the directory inwhich you would liketo create the new project (your working directory) and
then type the name of the new project. Inthis example, the working directory is c:\ti\bin and the project
name ishello.mak. In the standard devel opers package, you may browse into the <I.1. target
board>\EXAMPLES\TARGET directory.

Next, open the Project | Add Files to Project didog box to add files to the project. Add the HELLO.C
file fromthe C:\<LI. target board>\Examples\Target directory and the GENERIC.CMD file
from the C:<l.1. target board> directory to the project. Remember to choose the correct file type then
when you have sd ected the file to add, dick <Open> button.

Add Files to Project
Laak in: I i Target j gl
41642 ClDacan EhFite
A4d1 CDio & Fles.c
Addd I FifaCable
Add0 Mot MESCOPI. S50
Ajx Clsd & Testc
A2l [:I Sd16 WEIVELSCC

File: name: IHello.c DOpen R’

Files of type: ISource Files [*.c.”5%..&% j Cancel

2

FIGURE 13. Adding Filesto a Code Composer Studio Project

Development Package Manual

71

Developing Target Code

It isimperative that you add an appropriate command file to the Code Composer Studio project. The
generic.cmd command file describes the memory map of thetarget hardware, without which the linker
will be unable to place executable sections into appropriate memory regionsfor debugging. That is, the
memory map for the target DSP specified in the generic.cmd file will be used to link the project output
file If you wish, you may copy the contents of the generic.cmd file (located in the root of the Zuma
tool set) into your working directory, rename it appropriately and add the modified cmd file to your
project instead.

Thelibrary fileswill be required, but do not add them directly into the project like the hello.c and
generic.cmd files. Rather, manually typethe desired libraries needed to link the project into the Project
| Options | Linker tab when ingtructed to do so later within this chapter.

Next, you may optionally open the files in the project by double-clicking on their nameswithin the
Project window.

-] GEL fles
5‘ init.gel
B[Project
E@ hello.rmak
(23 DSP/BIDS Config
generic.cmd
1] Inchade
[Libraries
=] Source
i@ Helloc

Bl

FIGURE 14. Code Composer Studio Project Window.

Next, you must configure the project compiler settings o that when Hello.c is compiled, the appropriate
memory model and switches are used.

Build Options (M 62, Q62, SBC62 Boar ds)

Click on Project | Optionsto open the Build Options dialog box, then click on the Compiler tab to show
the current compiler options.

Configure the compiler optionsto use thefollowing settings: 1n the Memory Model s combination box,
sdect “Aggregate Data and Calls are far (-ml2 memory model)”. Then in the category column, choose
Optimization and select “Leve 2 - Global”. In the category column, choose Assembly and de-sel ect
“Keep Labelsas Symbols’. Againinthe category column, choose Runtime Model Options 1 and sd ect
“Big Endian Format”. Then type the last compiler build option “-x2" in the edit box at the end of the

72

Devd opment Package Manual

A Simple Code Composer Studio Project

command line be ng edited. When finished, the compiler dialog screen should look exactly like one

below.

Build Options
Compiler IASSEmhIErI Linker |
-gme -ml2 -02 T MERAE wamplesh T argst -+ d
temary Models Agoregate Data and Calls are Far ﬂ
Optimize For Code Size Crefault 'I

Suppress Banner Drefault 'I
Target Version Default =

Category: i~ Funtime todel Options 1
General I¥ Big Endian Format

P. G

P::i:: p[ean I Tum off 5% Pipelining
Parser Diags

Dptimizzton I Aliased Variables
Azzembly ™ Profile Optimized Code

Filzs

Funtime Maodel Options 1
Fiuntime Model Options 2
Call Graph/Library &ssumptions

I™ Pipeline Feedback
™ Minimal Unrolling
I™ Mo Bad Alias Code

FIGURE 15. Code Composer Studio Compiler Build Options

Next, dick on the Assembler tab and configure the assembler build options. In this screen, make sure
the foll owing options are selected “ Enable Symbolic Debug Information”, “Make All Symbols Global”
and “Produce big-endian format codes’. When finished, the assembler dialog screen should look like

one bd ow.

FIGURE 16. Code Composer Studio Assembler Build Options

Build Options | x|
Compiler Assembler | Linker |
-egs LI
™ Suppress Banner
¥ Enable Symbolic Debug Information
Include Search Path I
™ Generate Listing Files
I Generate Crosseference T ables
I Make Spmbols Case Insensitive
¥ Make Al Spmbals Global
W Eroducs bigendian fomat codes
oK ; I Cancel | Help |

Development Package Manual

73

Developing Target Code

Finally, click on the Linker tab and configure thelinker build options as follows. Inthe Output Module
combination box sd ect “ Relocatable Executable”. Then set the Heap Size to 0x400 bytes and the Stack
Size to 0x800 bytes. Make sure the Exhaustivdy Read Libraries has been sdected. Now, add stdio.lib;
periph.lib; dsp.lib; and rts6201e.lib into the Include Libraries edit box (in that order). When finished,
the linker dial og screen should ook like one bel ow.

Build Options B=

Eompilerl Assembler Linker |

-ar - -heap 0xd00 -0 Hello?.out -stack 0x800 -« - stdia.lib | periph.lib | ;I
dap.lib -l ts62071 e lib _I

I~ Suppress Banner

Output Module Relocatable Executable j

Output Filename Hella1. out

Map Filename |

ROM Autaintiaization Model ¥
Heap Size (0400

Stack Size IDHSDD
Fill % alue: I

Code Entry Paint |
¥ Exhaustively Read Libraries
Library Search Path |
Include Libraries Istd\o.Iib;pariph.Iib;dsp.\ib;ltsB2DT elb
I~ Make Global Symbolz Static

™ Ship Symbolic Infarmation I~ Warn About Dutput Sections

Ok |:I Cancel | Help

FIGURE 17. Code Composer Studio Linker Build Options

Once all the build options have been set, rebuild your project by clicking Project|Rebuild All in the
Code Composer Studio menu bar. If errors are encountered in one or more sourcefiles, they are listed
in the output window. You may vidt and repair each error by either double clicking on each error in the
Output window.

Inkhz Hellol.mak Bl
[[M5320C6z COFF Linker Version 3.01
Copyright (o) 1896-1998 Texas Instruments Incorporated
Fuild Complete,
0 Errors, 0 Warnings.

o
Ly of

FIGURE 18. Code Composer Studio Build Results Window

Devd opment Package Manual

A Simple Code Composer Studio Project

Build Options (M67, Q67, SBC67 Boar ds)

Click on Project | Optionsto open the Build Options dialog box, then click on the Compiler tab to show
the current compiler options.

Configure the compiler optionsto use thefollowing settings: 1n the Memory Model s combination box,
sdect “Aggregate Data and Calls arefar (-ml2 memory model)”. In the Target Version combination
box, sdect “67xx”. Then in the category column, choose Optimization and select “Level 2 - Global”.
In the category column, choose Assembly and de-select “Keep Labelsas Symbols’. Again inthe cate-
gory column, choose Runtime Model Options 1 and select “Big Endian Format”. Then type thelast
compiler build option “-x2" in the edit box at the end of the command line being edited. When finished,
the compiler dialog screen should look exactly like one below.

Build Options [%]

Compiler IAssEmhIerI Lmkerl

-gme -ml2 -mwE700 -02 -fC:MMEE xamplesh T arget =2

(RO

Memory Models Aogregate D ata and Calls are Far j
Optimize For Code Size m
Suppress Banner m

Target Wergion m

C.

|
— General

HE W Generate Symbolic Debug Infomation
F. en

Parser Pre Include Search Path I
Parset Diags Define Symbals I

Optimization

Azzembly

Files

Runtime Madel Options 1
Runtime Madel Options 2

Call Graph/Library Azsumptions

ak [I Cancel | Help

FIGURE 19. Code Composer Studio Compiler Build Options

Next, dick on the Assembler tab and configure the assembler build options. In this screen, make sure
the foll owing options are selected “ Enable Symbolic Debug Information”, “Make All Symbols Global”
and “Produce big-endian format codes’. When finished, the assembler dialog screen should look like
one be ow.

Development Package Manual

Developing Target Code

Build Options B

Compiler Assembler | Lirker |

-e0s

BT

I Suppress Banner
¥ Enable Symbolic Debug Information
Include Search Path |

I™ Generate Listing Files

™ Generate Crossreference Tables

I Make Symbals Caze Insensitive
¥ Make Al Symbols Global

[{Produce big-endian formal codes

oK ;I Cancel | Help |

FIGURE 20. Code Composer Studio Assembler Build Options

Finaly, click on the Linker tab and configurethelinker build options as follows. Inthe Output Module
combination box sd ect “ Relocatable Executable”. Then set the Heap Size to 0x400 bytes and the Stack
Size to 0x800 bytes. Make sure the Exhaustively Read Libraries has been sdected. Now, add stdio.lib;
periph.lib; dsp.lib; and rts6701e.lib into the Include Libraries edit box (in that order). When finished,
the linker dial og screen should ook like one be ow.

Build Options B

Cumpi\erl Assembler Linker |

-ar - -heap 02400 -0 Helol out -stack 0800 -« - stdio lib - periph.lib 4 ;I
dzp.lib - ntsE7 01 elib _I
¥

[~ Suppress Banner
Output Madule Relocatable Executable j

Output Filename Hello1.out

tdap Filename |
RO Autoinitialization Model > I
Heap Size 0x400

Stack Size W

Fill Value —

Code Entry Point I

¥ Exhaustively Read Libraries

Library Search Path I

Include Libraries Istdln lib:periph.lib:dzp btz 707 & lit]
[~ Make Global Symbols Static

[Strip Symbolic Information ™ ‘Warn About Dutput Sections

ak. [l Cancel | Help

FIGURE 21. Code Composer Studio Linker Build Options

Devd opment Package Manual

A Simple Code Composer Studio Project

Once all the build options have been set, rebuild your project by clicking Project|Rebuild All in the
Code Composer Studio menu bar. If errors are encountered in one or more sourcefiles, they are listed
in the output window. You may vist and repair each error by either double clicking on each error in the
Output window.

Tnkbx Hellol.mak =l
[[M5320C6x COFF Linker Version 3.01
Copyright [c) 1996-1999 Tezas Instruments Incorporated
[Fuild Complete,

0 Errors, 0 Warnings. I |
Il _'I_I

FIGURE 22. Code Composer Studio Build Results Window

Automatic make€file creation

When a project is created, opened, modified, built or rebuilt, the Code Composer Studio dependency
generator automatically generates aproject makefile (named <pr oj ect fi | e>. mak, located in the
project directory), which is capable of rebuilding the project’s output file from its components.

Thisfileis automatically submitted to the internal make facility whenever you click on build or rebuild
within Code Composer Studio. Themake facility automatically constructsthe output file by recompil-
ing the out-of-date source files including the dependencies contained within those source files.

Rebuilding a Proj ect

It issometimes necessary to force a complete rebuild of an output file manudly, such as when you
change optimization levels within a project. To force a project rebuild, sdect Project | Rebuild All from
the Code Composer Studio menu bar.

Running the Tar get Executable

The hel | o program is very simple, only printing the single line “Hello, World” to the terminal emula-
tor before waiting to echo any keystrokes and exiting. Bring up the “Hello, World” source file edit
screen. Scroll down the source file by using cursor down button until you reach the call to printf(),
which looks like the following:

printf("Hello, World\n");

Change the output stringtoread “Hel | o, Brave New Wor | d\ n”. You can now compile the new
version by executing Build from the Project menu (or by clicking onitstoolbar icon). This causes Code
Composer Studio to gart the compiler, which produces an assembly language output. The compiler
then automaticaly startsthe assembler, which producesa. obj outputfile (hel | 0. obj). Code Com-
poser Studio then invokes the Tl Linker using thegener i c. cnd file, which islocated in the root

Development Package Manual

77

Developing Target Code

board directory. This rebuilds the executable file usng the newly revised hel | 0. obj . If no errors
were encountered, this process creates the downloadable COFF file hel | 0. out , which canbe run on
the target board. At this point, the program may be run using the Terminal Emul ator appl et, which may
beinvoked using the Terminal shortcut located within the target board program group created during the
ZumalLibrariesinstallation process. Inthetermind emulator, download the helo.out file. The pro-
gram runs and outputs the message “Hello, Brave New World” to the terminal emulator window.

If errors are encountered in the process, Code Composer Studio detects them and places them in the
build output window. If the error occurred in the compiler or assembler (asin aC syntax error), the cur-
sor may be moved to the offending line by simply double-clicking on the error line within the build out-
put window, and the error message will be displayed in the Code Composer Studio status bar. |If the
linker returns a build error, the build output window shows the error file. From thisinformation, the
linker failure can be determined and corrected. For example, if afunction namein acall ismisspelled,
the linker will fail to resolve the reference during link timeand will error out. Thiserror will be dis-
played on the screenin the build output window.

Note: Besureto gart theterminal emulator BEFORE starting Studio, to avoid resetting the DSP target

in the midst of the debugging session. If Terminal is not yet running and you wish to run the Hello
object file, perform the foll owing steps.

1. Execute Debug | Run Free to logically disconnect the DSP from the debugger software.
2. Terminate the Studio gpplication.
3. Invoke the Termind application.

4. Restart the Studio application.

Thisoutlines the basics of how to recompile the existing sample programs within the Studio environ-
ment.

Anatomy of a Target Program

While not providing much in the way of functionality, the hel | o program does demonstrate the code
sequence necessary to properly initialization thetarget. The exact coding, however, is very specific to
the1.l. C Development Environment, target boards, and is explained in this section in order to acquaint
devdoperswith the basic syntax of atypical application program.

Here we examine the M62 version of the hel | o program example. Although the source is not neces-
saily identicd to that of hel | o for the other targets, it istypical of the overall structure of the typical
application program designed under the devel opment environment.

78

Devd opment Package Manual

Anatomy of a Target Program

*
* HELLO. C

* Test filel/programfor target board.
*/

#i ncl ude "peri ph. h"
#i ncl ude "stdi o. h"

mai n()

{
int key;
enabl e_nonitor();
clrscr ();

printf(“Hello World!'\n");
printf(“\nEchoi ng keystrokes...\n");

do

{
key = getchar();
put char (key) ;

}
whi l e(key !'= ESC) ;

monitor();

The two lines of the program that being with a“#" are #include statements, which include the header
files for the peripherd and standard I/O libraries. Theseinclude prototypesfor all thelibrary routinesas
well as variable definitions and #define satements for the peripheral memory-mapping addresses.
These#defines are especidly important for those who wish to perform direct peripheral access, rather
than using the peripherd libraries.

Theenabl e_noni t or () will setup the standard monitor I/O interface. The next two lines perform
the standard 1/O function of the program, clearing the terminal emulation screen and printing “Hello,
World” & “Echoing Keystrokes...”. These two lines are where cusom code should be inserted.

Thefollowing get char () call simply echoeskeystyped at theterminal emulator back to the terminal
display. Thisroutineis also part of the standard I/O library. The program effectively terminates here,
except that interrupts are still active and interrupt handlers (if they had been ingalled) would still exe-
cute properly.

Thehel | o program is very simple, but it exhibits the basic functionality needed to properly start on
the CPU, as well asthe initialization needed to interact with Code Conposer St udi o and the ter-
minal emulator properly in the development environment.

Development Package Manual

79

Developing Target Code

Useof Library Code

Library routines can be compiled and linked into your custom software simply by making the appropri-
ate call in the source and adding the appropriatelibrary to the linker command file. Refer tothe library
reference in this manual for library location information on each function.

In general, user software needs to #include the relevant library header file in source code. The header
files define prototypes for al library functionsas well as definitions for various data structures used by
the library functions. The file gdio.h should be included by programs using the standard /O library,
and the fil e peri ph.h should be included if a program uses functionsin the peripheral library. Thefunc-
tion definitionsin the peripheral library reference note which library aparticular function livesin, as
well as the header file, which should be included for that function.

Compiling/Assembling/Linking Outside Code Composer Studio

Under certain circumstances, it may not be possible to use Code Composer Studio macro definitions to
compileinsde the editor. COVPI LE. BAT, ASSEMBLE. BAT, and LI NK. BAT are provided in the
%I1_BOARD% directory and may be executed by typing their namesfollowed by the source file on
which they areto operate. For example, thefile mycode. ¢ can be compiled by typing

conpi |l e mycode

at the DOS prompt. This causes the COVPI LE. BAT script to start, which runsthe compiler and gener-
atesthefile nycode. obj , assuming no errors occurred. The COVPI LE. BAT script also searches for
thefilenycode. cnd in the current directory. If the linker command file isfound, then thelinker is
automaticaly run and the entire executable linked. |f the command file is not found, processing sops
with the generation of mycode. obj .

Assembly source (mycode. asm) may be assembled by typing

assenbl e nycode

where the assembler is called and an object file generated.

Linking can also be performed. In this case theinput fileis not source code, but alinker command file
(mycode. cnd):

i nk nycode

Thisline causesthe linker to build the executable mycode. out , again assuming no errors have
occurred during the process. Also, notethat the COMPI LE. BAT script will automatically link the exe-
cutableif alinker command file of the same name exids.

In all the above cases, if any errors occur, an error file (mycode.err) is generated by the software tools.
The mycode.err file contains the full console output of each of the tools. Any error that isgenerated by
the tools will be recorded in thisfile.

80

Devd opment Package Manual

The Next Step: Developing Custom Code

The Next Step: Developing Custom Code

In building custom code for an application, I.I. recommends that you begin with one of the sample pro-
grams as an example and extend it to serve the exact needs of the particular job. Since each of the
example programs illugtrates abasi ¢ data acquisition or DSP task integrated into the target hardware, it
should be fairly straightforward to find an exampl e which roughly approximates the basic operation of
the application. It is recommended that you familiarize yourself with the sample programs provided.
The sample programs will provide a skeleton for the fully custom application, and ease alot of the tar-
get integration work by providing hooksinto the peripheral librariesand devices themselves.

Development Package Manual

81

Developing Target Code

82

Devd opment Package Manual

CHAPTER 6 Devdoping Host Code

This section describes the Innovative I ntegration Windows hog software develop-
ment environment. The environment provides compl ete support for generating 32-
bit Windows-compatible software, which is capable of controlling and communi-
cating with Innovative Integration’s DSP co-processor and data acquisition cards.
Virtual device drivers (Windows 9x VXD or NT Kernel Mode Driver) and dynamic
link libraries (DL L) are included to provide an easy-to-use, portable low-level
interface for thetarget hardware. Sampl e applications show how to cdl the DLL
functionality and present basic interface examples with guidelinesfor on processor
card control requirements and data movement.

Host software development is directly supported under the Microsoft Visual C/C++
4.0 environment for generating 32-bit Windows applications. All example applica-
tion programsincluded in the development package are supplied with Visual C
workspace files, making program modification and regeneration as simple as possi-
ble.

Please Note: Only Windows application development is currently supported by the
Developer’s Package. Foreign operating systems, such as Unix and OS9 are not
currently supported.

Dynamic Link Library

All target interactions takes place through calls to the supplied dynamic link library
(DLL). Thislibrary supplieslow-level functions for basic target board control,
including processor reset/run state, message passing via the board-specific mailbox
registers, application downloading, and bus master memory locking and access
control.

Development Package Manual 83

Developing Host Code

The function calls available under the DLL are documented in the appendices. Sample applications
(described below) provide working examples on how to interact with the card via host software.

Sample Host Programs

The DLL iscapableof interacting with up to four target DSP boards simultaneously by default (contact
Il if more than four targets arerequired). The DLL maintai nsa board-specific structure of information
for each target, known asthe car di nf o structure. An prototype of the cardinfo structure is locatedin
the\ | NCLUDE\ HOST\ subdirectory in the CARDI NFO. Hfile. An example is shown below.

/1
/1 cardinfo.h -- definition of CARDINFO structure
/1

#i fndef _ CARDINFO H__
#define _ CARDINFO H__

#include "ii_iostr.h" /1 Common | O Driver/DLL Structures
#i ncl ude "mail box. h" /1 Definition of MAILBOX structures
/1
/1 Boardlnfo structure
/1
typedef struct _Boardl nfo
{
ULONG Processor Count ;
ULONG DLL_Version; /1 Version | D nunmbers
ULONG Dr vVersi on;
ULONG Tal ker Version;
ULONG Cel | Si ze; I/ Target menory cell size, in bytes
ULONG C | Reg; /1 Shadow of control register
ULONG Fl ashSector Si ze; // Size of flash sectors, in bytes
ULONG Fl ashDevi cel d; /1 Flash device | D
ULONG Qi et Mode; // Don't Display Messages if true
} Boardl nf o;
/1
I/ Interruptlnfo structure
/1
typedef struct _Interruptinfo
{
ULONG I RQ /1 1 RQ of attached interrupt
HANDLE R ngOEvent ; // Ring O event handl e
HANDLE R ng3Event ; // Ring 3 event handl e
voi d (*Vector)(void *); // Virtual ISR function pointer
void * Cont ext ; /1 Virtual | SR context pointer

} Interruptlnfo;

Devd opment Package Manual

Dynamic Link Library

/1

/1l Seriallnfo structure

11
typedef struct
{
LONG
LONG
LONG
LONG
ULONG
LONG
LONG
OVERLAPPED
OVERLAPPED
COWT | MEQUTS
DCB
} Serial Info;

/1

Ber;

_Seriallnfo

In;

ReadFl ag;
MoVal ue;
MCtr;

RTS stat e;

Readi ng;
RxOverl ap;
TxOverl ap;
Ti meout s;
Deb;

/1 CARDINFO structure

/1
typedef struct
{
ULONG
HANDL E
Boar dl nfo
MAI LBOX *
I oPor t Bl ock
| oPor t Bl ock
Menor yBl ock
Menor yBIl ock
nt erruptlnfo
Seriallnfo
} CARD NFO;

#endi f

_cardinfo

Tar get ;
Devi ce;

I nf o;

Mai | ;
Port;
OpReg;
Dual Port ;
BusMaster;
I nterrupt;
Serial ;

/1 Buffer for |last character received
/'l True when character received

/1 Milti-byte value

/1 Milti-byte read state

/'l Qurrent state of the RTS output

/1l Bus control register value for Fl ash access

/1 TRUE if currently reading a character
/1 Info used in asynch input

/1l Info used in asynch output

/1l Info for set/query tinme-out paraneters
/1 Device control bl ock

/1 Nunber of current target

/!l Handle to Driver for device

/1 Board Info

// Tal ker Mail box Array

I/ Primary Port Block Infornation
/1 Secondary Port Block Information
/1 Shared Menory Area Infornation
// BusMaster Menory | nformation

// Interrupt |Information

// Serial Port |/0O (SBC s)

The cardi nf o sructureis accessed within Host application programs in order to gain access to
board-specific parameters which are maintained by theDLL. For example, in order to ascertainthesize
of the shared memory area on a specific target card a host program could use

/* send bus mastering physical address to target processor */

dsp = (CARDINFO*)target_cardinfo(target);

size = dsp->Dualport.Size;

Development Package Manual

85

Developing Host Code

Sample Host Programs

Each Zuma Tool st i s supplied with one or more example programswhich illustrates control of the DSP
board viathe supplied DLL. For bus-based boards, the example is SCOPE.C, which emulates asmple
oscilloscope. For stand-al one boards, the XRPT.C exampl e is provided, which illugtrates advanced
serid communications. The SCOPE example

SCOPE. C isasmall, working example written in Visual C v4.0 showing how to use bus-based DSP
boardsto move data between the target and Host memory spaces. The hogt application worksin concert
with a small DSP program running on thetarget to mimic the operation of a Smple oscilloscope.

The SCOPE application is included in the\ EXAMPLES\ HOST\ SCOPE subdirectory of

% | _BQOARD% lIts executableislocated in the\ EXAMPLES\ HOST\ SCOPE\ REL EASE subdirectory.
The DSP support code for this application is located in the\ EXAMPLES\ HOST\ SCOPE\ DSP subdi-
rectory.

SCOPE.C is amulti-threaded application example with three threads. The primary thread performs
Window management, including the Windows message handler. A second thread, EnqueueDat a()
handles data movement from the target DSP to the Host using shared memory (dual port memory on
ISA bus cards and bus master memory on PCI cards). Thethird thread, Pl ot Dat a() , plotsthe
enqueued data received from the target within the window.

This program illustrates many of the é ements of atypical Host application, which communicates with a
target DSP goplication. In this example, the Host program communicates closely with the SCOPE. C
DSP application located in the \ EXAMPLES\ HOST\ SCOPE\ DSP directory. SCOPETRG.Cisthe
codewhich runs on the target DSP and is responsible for feeding information to the Host via shared
memory.

When the Host program starts, it invokes the COFF downloader to download the object image of the
target DSP gpplication (SCOPETRG.OUT) within the downl oad() procedure. This procedure
makes callson the DLL in order to effect the download. Following the download, the application is
started running using the st ar t _app() function. The DSP application immediatdy begins generat-
ing mock andog datain order to emul ate acquiring data from the analog subsection on the target,
engueuing the acquired data. As soon as a packet-full of datais available, the data is dequeued by the
target, moved into shared memory and the Host program issignalled, usingthehost _i nt er r upt ()
target procedure.

The Host device driver handles the target interrupt signal and issues an special EVENT message to the
ring three DL L which performs a calback on the user-installed Host EnqueueDat a() function.
When this occurs, the offset into dual port memory containing the new packet of anadog samplesis read
from the shared memory. This address isused to enqueue datafrom shared memory areainto a Host-
mai ntai ned data queue of real-time anal og samples.

The Host Pl ot Dat a() thread draws an oscilloscope-like grid on the display window, then polls con-
tinuously for the avail ability of analog samplesin the Hogt queue. When a screenfull of dataisavail-
able in the queue, it is dequeued and plotted.

86

Devd opment Package Manual

Dynamic Link Library

The primary thread isresponsiblefor handling window messages only. The most typical window mes-
sages areinvoked when the user drags or resizes the ocilloscope window. When this occurs, the
WM_SI ZE message handler setsthe global variable refresh TRUE, which indicaes to the Pl ot -

Dat a() thread that a complete window updateis needed. The Pl ot Dat a() function temporarily
drops out of the data plotting oop in order to redraw the oscill oscope display. Then, it resumesthe plot-
ting function again, until the refresh variable is modified again.

The XRPT Example

XRPT. C isasmall, working example written in Visual C v4.0 showing how to use serial-based DSP
boardsto move data between the target and Host memory spaces. The hogt application worksin concert
with asmall DSP program running on the target to tally the number of target-to-host interrupts signalled
by the DSP during application execution. Like the SCOPE example for bus-based DSPs, X RPT illus-
trates indallation of aHost interrupt handler using DLL calls. Thisinterrupt handler isinvoked by the
target DSP viathe host_interrupt() function call, which in the case of single-board targets initiatesa
delta-CTS interrupt to the Windows device driver, which signals and event to the || DLL which calls
back the user-installed interrupt function.

Development Package Manual

87

Developing Host Code

88

Devd opment Package Manual

CHAPTER 7

Creating Target Software

Software is created for the target DSP by using one or more of the toolsincluded in
the Developer’s Package. The tools can be used alone or in concert with each other
to generate a downl oadable executable COFF format file, which can be run on the
target DSP board with the aid of the utilities included in the devel oper’s package.

Thissection of the Devel oper’s Package Manual details the use of the individual
tools in the package to create executables for the target DSP. This section also
gives step-by-step ingructionson how to use the C compiler and Code Composer to
write, compile, tegt, and debug custom C applicationson the target. Sample C
applicationsare also discussed

C Code Deve opment

C Compiler

The Texas Instruments C compiler isan ANSI C compatible compiler, which pro-
duces optimized assembly code for the TM S320C4x family of processors. A com-
plete set of manuals isincluded with the M62 Devel opers Package.

In addition to the excellent manuals from TI, refer to the Kernighan and Ritchie C
Handbook (avalable at cost from1.1.) for generic C questions and syntax. TheTI
manual s primarily describe the use of the compiler with the TM S320C4x family
and are not intended as C primersfor the beginner.

Development Package Manual

89

Creating Target Software

C Library Reference

Complete source codeto the entire suite of ANSI C libraries is provided with the C system to aid in
code development. Refer to the TMS320 Floating Point DSP Optimizing C Compiler Manual for a
complete list of Tl C functions.

Thel.l. M62 Developer’s System al so includes extensive high-level libraries useful in interacting with
the various peripherds on the M62 board. The following sections describe by peripheral type the func-
tions provided in the peripheral library. For a complete dphabetical listing of al peripheral functions,
see Appendix.

M62 Zuma Toolset Libraries

The Zumatoolset provides both target peripheral libraries and Host DLLs along with numerous exam-
ple programs to ill ustrate usage.

The peripheral libraries for the M62 provide support for the on-board peripherals and terminal 1/O func-
tions. Thelibraries are provided in threelinkable . LI B files: PER PH. LI B, STDI O. LI B, and
DSP. LI B. STDI O. LI B holds al the console termina emul ation and communications routineslised
in the following section, while PERI PH. LI B contains all other peripheral driver routines. DSP.LIB
contains commonly requested C-callable digital signal processing functions, plus common math and
gueue management extensions. Source code for the routinesis also provided, arranged by function in
the\ PERI PH, \ STDI O, and \ DSP subdirectories of theroot II|_BOARD directory, as follows:

Directory Library Source
\ DSP Standard Digital Signal Processing Routines.
\ PERI PH\ ANALOG Driversfor the M62 A4D4 instrumentation-grade anal og 1/0O module

and the complementary TERM mux module.

Driversfor the SD high-performance audio modul e.

\ PERI PHERAL\ BUS Driversfor V360 bus-mastering PCI interface.

\ PERI PH\ DI Gl TAL Digital I/O, PIT Timer control, module FLASH ROMs, etc.
Driversfor DIO module.

Driversfor MOT motion control module.

\ PERI PHERAL\ DI O DIO module DUART and digital /O drivers.

\ PERI PHA M SC Miscellaneous processor control and data conversion functions.
\ PERI PH\ RTS M odified boot-up routines for the M 62 baseboard.

\ STDI O Consol e and terminal emulation functions.

\ TALKER Start-up umbilica ‘ C6201 software.

TABLE 5. Zuma Toolset Source Directories

The tool set a so contains various support files arranged as described bel ow.

90

Devd opment Package Manual

C Code Development

Directory Library Source

\ EXAMPLES\ HOST Example programs illustrating use of the DLL to control the DSP
board from within MS Visual C programs.

\ EXAMPLES\ TARGET | Example programs illustrating use of the target peripheral librariesto
perform common DSP tasks.

\ | NCLUDE\ HOST Header files used by Host Visual C programs.

\ | NCLUDE\ TARGET Header files used by target Texas Instruments C programs.

\ LI B\ HOST Linkablelibrary filesfor Host Visual C and C++ programs.

\ LI B\ TARGET Linkablelibrary filesfor target TI C and assembler programs.
\ SRC Useful public domain source files for the C6201 processor.

TABLE 6. Zuma Toolset Support Subdir ectories

STDIO Console Terminal Driver. The Developer’s Package contains afull-featured terminal emul ator
application (terminal .exe), suitablefor both user interface purposes as well as debugging use. The
peripheral library provides a complete set of standard I/O routines, which can communicate directly
with thisterminal emulator. The source for the standard 1/O routinesisgiven in the\ STDI O subdirec-
tory under the install ation directory. In general, the standard 1/O library functionality isidentical to that
of the K& R standard I/O library. However, some M62-specific functions are provided to allow higher
level functionality such as cursor positioning, text attribute control, and graphical data plotting. The
following target programming section gives detail s on how to use the standard 1/0O peripheral library to
interact with the terminal emulator.

Digital Peripheral Drivers. The digital peripheral drivers control the ‘C6201 internal timers and the
digital 1/0O lines. These drivers allow for high-leve accessto timebase control functionsand digital 1/0
activity without doing direct hardware programming. The following target programming section gives
details on how to use the digitd peripheral library to program the digital peripherals. Source code for
the functionsis given in the \ PERI PH\ DI G TAL directory.

BUS Peripheral Drivers. The BUS peripherd drivers provide control functions for the onboard V360

PCI businterface. The available routines support very-high speed bus-mastering transfers between the
512 Kbyte, external async SRAM of the M62 and host PC memory. This driver also includes hardware
mailbox support routines, which are used extensively by the standard 1/O library in order to support ter-
minal emulation. Additionally, these mailbox routines provide a means of performing interrupt-driven

communications with the Host PC. The target programming section gives details on how to use the bus
peripheral library. Source code for the functionsisgiven in the\ PERI PH\ BUS directory.

Miscellaneous Peripheral Drivers. The MISC directory contains code to support high-level accessto
the internal registers, byte packing and unpacking, interrupt vector support, and other functions. Source
codefor the functionsis giveninthe\ PERI PH\ M SCdirectory.

RT S Peripheral Drivers. The RTS peripheral drivers provide board-specific versions of the functions
called by the TI C Compiler during coldstart initialization of the C runtime engine. These files have
been modified as necessary in order to provide a completeinitialization of the M62 onboard hardware
immediately prior to calling mai n() within application code. Additionally, the RTS functionsinclude
amodified version of the millisecond timer function required to support the Tl C timekeeping functions
(ligedinti me. h). Sourcecode for the functionsis giveninthe\ PERI PH\ BUS directory.

Development Package Manual

91

Creating Target Software

Digital Peripheral Drivers. The digital drivers support accessto all baseboard and add-on digital 1/0
functions.

The DIO peripheral drivers provide control functions for the optional DIO plug-in module. The func-
tions provide high-level C accessto the DIO modul€e’s 32, additional digita 1/0 lines, plus either inter-
rupt-driven or polled use of the DIO’s onboard DUART (Dual-channel Universa Asynchronous
Receiver Transmitter). The target programming section gives details on how to use the digital periph-
eral library to program the digital peripherals. Source code for the functionsisgiven in the

\ PERI PH\ DI @ TAL\ DI Odirectory.

The MOT peripheral drivers provide control functions for the optional MOT plug-in module. The func-
tions provide high-level C access to the MOT modul €' sfour, precision motion-control axes. Each of the
axes featuresindependent encoder inputs and either digital or 16-bit and og output. Digital output may
be ether pulse and direction positive or negative pulse to support sepper motor amplifier inputs. The
target programming section gives details on how to use the MOT peripheral library to program these
peripherals. Source code for the functionsis given inthe\ PERI PH\ DI G TAL\ MOT directory.

Analog Peripheral Drivers. The Analog peripheral drivers provide control functions for the optional
andog plug-in modules: A4D4, AlX, and SD modules. The functions provide high-level C access to
the A4D4’ sanal og input and output channels and their associated gain amplifiers. Additionally, the
driver supports control of the optional TERM break-out panel, a companion to the A4D4 module. In
order to support muxing of each of the A4D4 modules 8:1 to dlow input from up to 32 simultaneous
channels per A4D4 module. Source codefor the functionsis given inthe\ PERI PH\ ANALOG\ A4D4
directory.

The Al X peripheral drivers provide control functions for the optional A1X plug-in module. The func-
tions provide high-level C accessto the AIX module's four, 2.5 MHz, 16-bit analog input channels.
Source code for the functionsisgiven in the\ PERI PH\ ANALOG\ Al X directory.

The SD peripheral drivers provide control functionsfor the optional SD plug-in module. The functions
provide high-level C accesstothe A4D4 modul€'s four, audio-grade, 24-bit analog input and 20-bit out-
put channels. Source codefor the functions is given in the \ PERI PH\ ANALOG\ SD directory.

The target programming section gives details on how to usethe analog peripheral library to program
these analog peripherals.

Digital Signal Processing Library. The DSP directory contains code to support high-leve access to
the common signal processing functions such as FFT’s, filters and compression. Additional routines are
provided for common functions such as matrix manipulation, curve fitting and general purpose queue
management. Source code for the functionsis given in the\ DSP directory.

Texas Instruments C Libraries. Several libraries areincluded with the system that provide support for
floating point and extended math functions, DSP oriented procedures and initialization exampl es.
Chapter 5 in the TMS320 Floating Point DSP Optimizing C Compiler User’s Guide describes the librar-
ies.

92

Devd opment Package Manual

C Code Development

The following libraries are available:

Library Operation

ASSERT. H Defines the assert macro for runtime error message reporting.

CTYPE. H Declares functions that test and convert characters.

LIMTS. H Definesrange limits for characters and variable types.

FLQAT. H Defines fl oating point range limits.

MATH. H Defines trigonometric, exponential and hyperbolic math functions.

ERRNO H Defines errno variable for catching range errorsin function cals.

STDARG. H Defines macrosto aid in variable argument functions.

STDDEF. H Defines two new types and macros used within runtime functions.

STDLIB. H Declares many common library functions such as string conversion, sorting and
searching functions, program exit functions and some integer-arithmetic that is
not astandard part of C.

STRI NG. H Declares functions for string manipulations.

TI ME. H Declares macros and types useful for time manipul ations.

TABLE 7. Texas I nstruments Standard Library Functions

M62 Hardware | nteraction

All peripherals are memory mapped into the * C6201 address space, using the locations given in the fol-
lowing table. Thetable also liststhe wait states applied to accesses to each peripherd.

The development system provides routines to accessall integrated M62 peripherals. Thissection
describes how to program the peripherals using the supplied library functions under C or via direct
memory accesses to the supplied peripheral register map. In general, direct memory access delivers
higher performance than using the C function library since it avoids the overhead of the function calls
necessary to access thelibrary. However, the libraries have been crafted to utilize inline code where
possi ble to mitigate this effect. 1n the peripheral descriptionsthat follow, each device's access methods
are called out for both high level and direct memory access. In the case of C functions, the function
names and argument variables are called out. In the case of direct memory access operations, the rele-
vant addresses are listed along with the functions they perform and accompanying Per i ph structure
elements which may be used from C to simplify access. These elements are defined in the header file
peri ph. h.

Development Package Manual

93

Creating Target Software

Function Address C Language M neumonic Mem Space
FIFO Port 0x0400000 | Peri ph->Fifo CEO
V360 Registers 0x1400000 | Peri ph->Pci Regs CE1l
FIFO Port Reset 0x1410000 | Peri ph->Fif oReset
AD9850 Reset 0x1470000 | Peri ph->DDS. Reset
A D9850 Frequency Update 0x1480000 | Peri ph->DDS. Updat e
AD9850 Write Clock 0x1490000 | Peri ph->DDS. Cl ock
Digital /O Data Register 0x14A0000 | Peri ph->Di 0. Data
Digital I/O Direction Control 0x14B0000 | Peri ph->Di o.Direction
Digital I/O Input Latch Clock Control 0x14C0000 | Peri ph->Di o. Lat chCont rol
Regi ster
External M ux Control O 0x14D0000 | Peri ph->Mux[0]
Externa Mux Control 1 0x14E0000 | Peri ph->Mux[1]
16 bit External Timer 0x14F0000 | Peri ph->Ti mer
External I nterrupt Input 4 Select 0x1500000 | Peri ph->El[4]
Externa I nterrupt Input 5 Select 0x1510000 | Peri ph->El[5]
Externa I nterrupt Input 6 Select 0x1520000 | Peri ph->El[6]
External | nterrupt I nput 7 Select 0x1530000 | Peri ph->EI[7]
1/0 Module Strobe 0 0x1540000 | Peri ph->Mbdul e[0]
1/0 Module Strobe 1 0x1550000 | Peri ph->Modul e[1]
1/0 Module Strobe 2 0x1560000 | Peri ph->Mbdul e[2]
1/0 Module Strobe 3 0x1570000 | Peri ph->Modul e[3]
1/0 Module Strobe 4 0x1580000 | Peri ph->Nbdul e[4]
1/0 Module Strobe 5 0x1590000 | Peri ph->Mbdul e[5]
1/0 Module Strobe 6 0x15A0000 | Peri ph->Mbdul e[6]
1/0 Module Strobe 7 0x15B0000 | Peri ph->Modul e[7]
1/0 Module Strobe 8 (cM62 only) 0x15C0000 | Peri ph->Nbdul e[8]
1/0 Module Strobe 9 (cM62 only) 0x15D0000 | Peri ph->Nbdul e[9]
1/0 Module Strobe 10 (cM62 only) 0x15E0000 | Peri ph->Modul e[10]
1/0 Module Strobe 11 (cM62 only) 0x15F0000 | Peri ph->Modul e[11]
Async SRAM (128K x32) 0x1600000 | Peri ph->ASRani 0. . 0x80000]
SDRAM (16M byte) (optional) 0x2000000 | Peri ph->SDRan{ 0. . 0x1000000] CE2
SBSRAM (1IMbyte) (optional) 0x3000000 | Peri ph- >SBRan{ 0. . 0x100000] CE3

TABLE 8. M62 External Peripheral Memory Map

This section does not describe peripheral hardware specifications and other hardware issues. Refer to
the M62 Hardware section of this manual for additional hardware information.

Digital Input/Output

Thedigital input/output (1/0) buffers provide a means for generating 32 bits of direct digital input or
output to and from external hardware. This1/O can be clocked from either the ‘C6201 processor or
from external TTL sources, allowing externa devicesto automaticaly latch datainto thel/O buffersfor
the * C6201 to read.

Input/output direction for either half of the 32-bit port may be programmed on the fly using on-board
logic. The port may be configured in the software for input or output in groups of eight bits.

94

Devd opment Package Manual

C Code Development

Memory Mapped Digital 1/O Access. Thefollowing table shows the memory locations used to inter-
act with the digital 1/O buffers. Three Clanguage routines are supplied to interact with the digital 1/0
port.

Function C Language Mnemonic
Digital 1/0 Data Register Peri ph->Dio. Data
Digital 1/0 Direction Control (4 bytes) Peri ph->Di o. D recti on
Digital 1/O Latch Control Per i ph->D o. Lat chCont rol

TABLE 9. Digital 1/0O AccessMemory Location

The Per i ph->Di o. Dat a location isused to access the datalines of the digital 1/0 port. Results of
read and write accesses depend on the 1/0O direction of the port (see bel ow for information on setting the
port direction). If the port isconfigured for input, aread access|atches new read data from the externa
pins and the new dataisread into the * C6201. If the port is configured for output, the most recently
latched output datais read into the * C6201 (output data does not change). Write accesses to an input
port cause no change to the port status, while write accesses to an output port cause the new data to be
latched and output to the external 1/O pins.

The Peri ph->Di 0. Di rect i on location controlsthe direction of each byte of the digital 1/O port.
The four least significant bits of this regigter are used to configure each of the bytes of the digital I/O
port for either input or output, as follows:

Dio.Direction- | Value | Direction
Register Bit #
0 0 DX[0..7] output (default)
1 DX([0..7] input
1 0 DX[8..15] output (default)
1 DX([8..15] input
2 0 DX[16..23] output (default)
1 DX[16..23] input
3 0 DX[24..31] output (default)
1 DX[24..31] input

TABLE 10. Table 17: Digital 1/0 Direction Configuration

ThePer i ph->Di o. Lat chCont r ol location controls the method of latching data into each byte of
the digital I/0 port. The four least significant bits of thisregister are used to configure the latch method
aseither internd (triggered by CPU accesses) or externa (triggered by an external TTL pulse), as fol-
lows:

Development Package Manual

95

Creating Target Software

Dio.LatchControl- Value | BitsAffected Clock Source
Register Bit #
0 0 0.7 Internal (CPU-based)
1 Externa
1 0 8.15 Internal (CPU-based)
1 Externa
2 0 16..23 Internal (CPU-based)
1 Externa
3 0 24.31 Internal (CPU-based)
1 Externa

TABLE 11. Digital 1/O Latch Configuration

C Language Digital 1/0 Functions. Data may be read or written to the digital 1/O port using the fol-
lowing routines in the DIGITAL support library.

Functi on Name Descri ption

DIOdir() Sets thedirection of al four bytes of the onboard 32-bit
digital 1/0 port.

Dl O read() Returns current state of all 32-bits of digital 1/O port.

DOwite() Sets current state of all 32-bits of digital output port cur-

rently configured for output.
DI O | atchcontrol () | Setsthelatch method of all four bytes of the onboard 32-
bit digital 1/0 port.

TABLE 12. Digital I/O Library Functions

Timers

The timers provide the capability to generate hardware timebases, which can be used to trigger proces-
sor interrupts, analog signal conversions, or as direct outputs to external hardware. There are atotal of
six timebase sources built in to the M62: two 32-bit timers internal to the * C6201 processor, and three
16-bit channelsimplemented with custom logic within the FPGA plus one AD9850 direct digital syn-
thesizer. The supplied library functionsinitidize the timers to a free-running, pul se generation mode
suitable for generating convert pulses to the anal og hardware.

Thetimers areinitialized by codeinthet i mebase() routineeachtimeitis called. Normally, no
other function call sare necessary to usethetimers. However, when supplying an external TTL signal to
the * C6201 TCLKO/1 inputs in order to provide an external timebase to analog circuitry, it will be nec-
essary to create and usea custom verson of t i mebase() , which tristates the TCLK output driver to
avoid contention with external sources. Please note that certain hardware setups might be required
depending on the application. See the M62 Hardware section of this manual for more details on how to
set up the M62 board.

96

Devd opment Package Manual

C Code Development

C Language Timer Functions. The following functions give high-level access to the timer hardware.
See the appendices for completeinformation on the functions.

Function Name | Operation
ti nebase() Configures a specified timer channel (0..5) | for periodic counting at a
specified frequency using a specified source clock rate.

TABLE 13. C Language Timer Functions

ti mebase() canbe used to set aparticular timebase to a particular frequency. For example, the fol-
lowing call sets PIT timer channel 1 to generate a1000 Hz output pulse stream, assuming the hardware
default 1 MHz input clock to the FPGA logic:

timer(1, 1000.0, 1.0);

Memory Mapped Timer Access. It is possible to directly accessto the internal timer hardware con-
trolsviamemory mapped registersat specific addresses. It may be necessary to use these addresses to
set thetimersto a cusom mode. In general, unless custom functionality is required of thetimers, itis
recommended that the user exclusively access thetimersviathet i mer () routine rather than program-
ming the control and period registers manually.

For information about the ‘C6201 internal timers, please see the TMS320C6x User’s Guide. For addi-
tional information about the custom PIT counter/timer device, contact Innovative Integration. For an
exampl e of direct timer channel control, refer to the source codefor thet i mebase() function, located
inthe PERI PH\ DI G TAL subdirectory.

STDIO Communication. C stdio terminal emulation is provided in the Peripherd Library. The sdio

library communicates with the hos TERMINAL.EXE program viathe V 360 PCI interface mailbox reg-
istersto provide stdio support to DSP applications running on the M62. The stdio interface may be used
for real-time, non-intrusive software debugging or to create a bas ¢ user interface for OEM applications.

The following ligt shows the available Peripheral Library cdlsand their operation. See the Appendix
for complete information on the functions.

Function Name Operation

putchar () Emits an 8-bit character to the terminal emulator

getchar () Gets an 8-bit character from the terminal emulator’s keyboard
buffer

gets() Inputs astring into atarget buffer

puts() Displays a string from atarget buffer

sprintf() Formats a string into a memory buffer pointed to by buffer

printf() Prints a formatted string to the terminal

scanf () I'nputs aformatted string from the terminal into a buffer

sscanf () Converts aformatted string in memory into a buffer

stdi o_reset () Resets the terminal emulator display

f open() Opens afile on the Host PC, returning the file handle

fclose() Closes a previoudy opened Host PC file.

fread() Reads file contents into a target buffer

fwite() Writes atarget buffer into aHost PC file

Development Package Manual

97

Creating Target Software

f seek() Repositions the Host PC file pointer

ferase() Erases the specified Host PC file

kbd_hi t () Returns anonzero value if characters are currently available in
the monitor keyboard buffer

kbd_key() Returns 16-bit IBM scancode for pending keystroke from the
terminal emulator’s keyboard buffer.

gotoxy() M ovesthe terminal cursor

wher exy/() Returns the terminal cursor position

clreol () Clearsto end of current line

clrscr() Clearsthe terminal screen

type() Types formatted, null terminated string to console

bol d() Enables bold text attribute in terminal emulator

normal () Enabl es standard text attri bute within terminal emul ator

get_attribute() Returns the current character display attributes

set_attribute() Setsthe current character display attributes

cursor () Enabl es/di sabl es the cursor

get _busmast er _addr () | Obtainsthe base of the host busmaster memory from the termi-
nal emulator.

pl ot () PlotsaHost PCfile asagraph.

vi ew() Plotsatarget buffer as a graph.

TABLE 14. STDIO Driver Functions
Using Interrupts The M62 supports four external and numerousinternal hardware interrupts. These
include EIO, EI1, EI2, EI3, plusTINTO, TINT1 (internal timer/counters), internal com. port transmit
and receive and DMA.

Interrupts on the TM S320C6201 may be handled by writing either high-level C or assembly language
procedures within your application files, which employ the following interrupt-specific function names:

voi d c_i nt NN\() for C handlers or
_C_intNN for assembly language
where NN isnumbered 0 through 99 for each of the interrupts. For each interrupt, aprocedure must be
coded, which will be executed upon acknowledgment of interrupt NN by the 'C6201. This isdescribed
in moredetail in the C Compiler Users Manual.
Consider the following code example:
| *
* EXAMPLE. C
*/
#defi ne TINTO 14
mai n()

{

Devd opment Package Manual

C Code Development

enabl e_interrupts(); /* Enable unmasked xrpts */

tinebase(1l, 1000.0, 1.0); /* Internal timer 1 at 1kHz */
/* install interrupt handl er on TINT1 */

install_int_vector(c_int02, TINTO);

enabl e_i nt errupt (TI NTO) ;

/* Bul k of application */

disable_interrupt (TINTO); /* Disable TINTO xrpt */
}
/*
* |SRfor tinmer O - Tally a variable
*/
int mlliseconds
voi d c_int14()
{
mlliseconds++; /* Internal timer O is used to */

} /* synt hesize a tinmebase */

In this code, the internal timer 0 is configured to output a pul se every millisecond, which drives TINTO
on the 'C6201. The vector isinstalled into the jump tablewith acall toi nstal | _i nt _vector ()
and the bit associated with TINTO in the interrupt enable register, is enabled. Findly, mai n() calls
enabl e_i nterrupt s() which, setsthe global interrupt enable bit so that all unmasked interrupts
can be processed.

Each time the counter expires, theroutinec_i nt 14() executes. Inthisexample, the variablemi | -
| i seconds isincremented during each interrupt service cycle.

Each DSP application should include a copy of the default interrupt vector table, which isdefined in
vect ors. asm Thisassembly fileislocated in the PERI PH\ RTS directory. When it is compiled
intoa. obj fileand linked into the application, it will cause all entriesin the vector table to be initial-

Development Package Manual

99

Creating Target Software

ized with a default handler. The one exception being the bresk interrupt vector, which isfilled with the
pointer to the talker program. If an gpplication needsto make use of interrupts, those vectorswhich are
affected need to be changed withi nst al I _i nt _vect or () atruntime.

See the target exampl e programs provided on your distribution disksfor further examples of the use of
interrupts.

Example Target Programs for the M62

The following section detailsthe exampl e target softwareincluded with the Deve oper’s Package.
These programs are provided as modd sfor custom user software, and it is highly recommended that the
user examine these exampl es before beginning afirs devel opment effort for thetarget DSP. Full source
codeis provided for user inspection and reuse in modified or custom applications.

These examples will run on a gandard M62 card with no additiona hardware required.

HELLO

HEL L Oisavery simpleintroduction to bad ¢ program components and use of the C stdio library for the
target card. When run with the hogt terminal emulaor active, the program smply initializes the target

hardware and stdio interface and prints the message “Hello, World” viathe stdio library to the terminal
emulator screen. The program then dropsinto an infinite dwell loop.

HELLOmay be rebuilt from with in the Code Composer Studio environment by loading the

HELLO. MAK project from the \target\exampl es directory. Then, modifying the source file HELLO. C,
and rebuilding the project (see the Code Composer Studio documentation for more information on the
application’s project management and make facilities).

For correct program functionality, it is necessary to run the HELL O application via the host terminal
emulator program. If the terminal emulator is not active and communi cating with the target M62 card
on which HELLOis running, the application will appear to hang at the first instance of a stdio function
call (usualy agetint () orputint() cal). Thisisdueto thefact that dl stdio calls use the M62
bus mailbox interface and are handshaken with the host terminal emulator gpplication. Any such calls
will hang if the termind emulator isnot active to complete the communication link.

TEST

TEST is board level hardware test program, which is capable of accessing the major peripherals on the
M62 to double-check proper hardware functionality. Assuch, it containsroutines for exercising each of
the peripherals on the M 62, including:

100

Devd opment Package Manual

Example Target Programs for the M62

1. Digital I1/0

2. Internal timers

3. Externd timers

4. Communications Ports

Since the TEST program aims to be all-encompassing in that it triesto test as much of the board-level
functionality as possible, it serves as a poor example for complicated operations such as A/D multi-
channel sampling and display. However, since the code included for TEST isbroken down into func-

tional pieces, which are called separately for each subsystem to be tested, it is possibleto factor out
individual testsfor usein other programs.

Development Package Manual

101

Creating Target Software

102 Devel opment Package Manual

CHAPTER 8

Target DS Peripheral
Libraries

Tar get Functions by Category

Category Name Description
Board Initialization & baud Set baud rate on current seria port
System Functions
cpu Set CPU number and mailbox
cpu_num Get CPU number
cpu_number Get CPU number (inline)
detect_cpu_speed Derive DSP clock speed
dma_done Wait for DMA completion
dpram_addr Return start address of Dualport RAM
on PC31
dpram_type Detects 16 or 32 bit Dualport RAM on
PC31
init_seria Initialize the serial 1/0 system
InitlP Initialize Industry Pack access struc-
ture
mem _size Detect size of memory space
test_ mem PC31 memory check
Busmaster Transfer bm_init Busmaster transfer initiali zation
Functions
bm_transfer Genera busmaster transfer
fifo_init Busmaster initialization

transfer_complete

Wait for Busmaster transfer to com-
plete

USB Bulk Transport
Interface Functions

InitBulkTranport

Initialize the Bulk Trangport Interface

StopBulkTransport

Shut down the Bulk Transport Inter-
face

| sBulkTransportReady

Returnstrueif system can send data

OpenBulkTransport

Opens achannel of the Bulk Transport
System

Development Package Manual

103

Target DSP Peripheral Libraries

CloseBulkTransport

Shuts down an open channel of the
Bulk Transport System

ReadBulk Read a block from aBulk Transport
channel
WriteBulk Writes a block toa Bulk Transport

channel

BulkDataAvailable

Returns the amount of data avail able
for reading on a channel

BulkSpaceAvailable

Returns the room for new data avail-
able on a channel

FlushBulk Forcesthe transmission of al datain a
channel
Digita 1/0 Functions C31_dig_dir Program thedirection of PC31/SBC31
PIA Digital 1/0 bytes
C31 read dig Read PC31/SBC31 P A Digitd /O
lines
C31_write_dig Write to PC31/SBC31 PIA Digital 1/0

lines

C31_write _dig_bit

Update asingle bit on PC31/SBC31

PIA Digita 1/0
dig_dir Program the direction of Digital 1/0
bytes
read_abits Read state of ABITS output lines
read_abits _bit Read state of asingle ABITSoutput
bit
read_dig Read Digital 1/0 lines
read_dig_bit Read state of asingle digital bit
write_abits Writeto ABITS digital output
write_abits bit Update asingle ABITS digital output
bit
write dig Writeto digital output
write_dig_bit Update asingle digital output bit
Anaog I/O Control enable_analog Initialize anal og subsystem
Functions
trigger_adc Set triggering mode for an ADC
trigger_adc_pair Set triggering mode for an ADC pair
trigger_dac Set triggering mode for an DAC

trigger_dac_pair

Set triggering mode for an DAC pair

write_analog_interrupt_mask

Set which anal og conversionsfire
interrupts

Analog Input Functions

correct_adc

Adjust ADC reading to proper range

correct_adc_pair

Adjust apair of ADC readingsto
proper range

convert_adc Manually trigger an ADC conversion

convert_adc par Manudly trigger an ADC conversion
onan ADC pair

read adc Read datafrom ADC

read_adc_pair Read datafrom a pair of ADCs

read_adc_automux Read data from ADC, and switch mul-
tiplexer

read_adc_pair_automux

Read datafrom apair of ADCs, and
switch mux

tions

Anal og Output Func-

correct_dac

Adjust DAC reading to proper range

correct_dac_pair

Adjust apair of DAC readingsto
proper range

convert_dac

Manudlly trigger aDAC conversion

104

Deve opment Package Manual

convert_dac_pair

Manudlly trigger aDAC conversion

onaDACpair

convert_dacs Manudly trigger DAC conversions
using a bit mask

read dac Read last value loaded into aDAC

read_dac_pair Read | ast value loaded into aDAC
pair

update_dac Write DAC value and automatically

trigger conversion

update_dac pair

Write DAC pair and automatically
trigger conversion

write_dac

Writevalueto DAC

write_dac_pair

Write value pair to aDAC pair

Programmable Gain
Functions

gain_to_mode

Convert Gain into equivalent Gain
M ode number

mode to_gain Convert gainmode to actual gain
value
read_gan Read |ast Gain setting
write_gain Update gain setting for a channel
write_gains Update gain setting for all channels
Mux Control Functions | auto_mux Configure automatic multiplexing fea-
ture
read_mux Read last setting of a parti cular mux
write_mux Update multiplexer setting for a chan-
nel
write_muxes Update multiplexer setting for al
channels
Mailbox and Sema- check_inbox Check incoming mailbox for new data
phore Functions
check_outbox Check outgoing mailbox for new data
clear_mailboxes Clear mailboxes
get_semaphore Get hardware semaphore
read_mailbox Read from incoming mailbox

read_mb_terminate

Read from incoming mailbox if data
available

release_semaphore

Rel ease hardware semaphore

write_mailbox

Write to outgoi ng mail box

write_mb_terminate

Write to outgoi ng mailbox if box is
ready

Interrupt Support Func-
tions

deingtall_int_vector

Remove vector from vector table

disable_interrupt

Disable specific interrupt

enable_interrupt

Enabl e specific interrupt

host_interrupt

Target to host interrupt

ingall_int_vector

Install vector into vector table

mail box_interrupt

Post a mailbox interrupt to the host

mail box_interrupt_ack

Acknowledge a mailbox interrupt

mailbox_interrupt_deinstall

Unload the handler for mailbox inter-
rupts

mailbox_interrupt_disable

Disable mailbox interrupts

mail box_interrupt_enable

Enabl e mailbox i nterrupts

mailbox_interrupt_install

Load a handler for mailbox interrupts

suspend

Idle until interrupts arrive

interrupt_cpu

I nterrupt specified multi processor tar-
get CPU

cpu_int_src

Return source code # for specified
multiprocessor CPU

Development Package Manual

105

Target DSP Peripheral Libraries

cpu_xrpt_hit Return regi ster index to specified mul-
tiprocessor CPU

Timer Functions disable_clock Disable system millisecond timebase
enable_clock Initialize system millisecond timebase
ms Dwell milliseconds
read_timer Read value from ahardware timer
timebase Set hardware timer frequency
timer Set hardware timer frequency
uclock Get system millisecond timer value
us Dwell microseconds

Memory Movement copy_mem Fast on-chip memory copy

Functions
fill_mem Fast on-chip memory fill
mem_to_port Fast on-chip transfer of datato aport
port_to_mem Fast on-chip transfer of datato a port
dma_copy_mem Fast DMA memory copy
dma fill_mem Fast DMA memory fill

dma_mem_to_port

Fast DMA transfer of datato a port

dma_port_to_mem

Fast DMA transfer of datato aport

Conversion Functions from_ieee Convert from IEEE-754 floating point
format
packb Pack byte valueinto int
packh Pack half word valueinto int
to_ieee Convert to | EEE-754 floating point
format
unpackb Unpack byte values from int
unpackh Unpack half word values from int
Flash Memory Pro- fast Restore PBCR to original val ue after
gramming Flash access
flash_erase Erase entire Flash memory
flash_init Initialize Flash for programming
flash_rd Read Flash byte
flash_read Read 32-hit word from Flash
flash_sector_erase Erase a Flash sector
flash_wr Write abyte to Flash memory
flash_write Write 32-bit word to Flash
dow Reduce speed of I/O accesses to
access Flash memory
CPU Register 110 clear_interrupt flag Disable interrupt enable bit

gt DIE

Retrieve 320C4x DIE regi ster

get |E Retrieve 320C3x | E register
get_IIE Retrieve 320C4x | |E register
get_IF Retrieve 320C3x | Fregister
get_IIF Retrieve 320C4x | IF regi ster
get_IOF Retrieve 320C3x | OF register
get_ ST Retrieve 320C3x/4x Status register
set DIE Set 320C4x DIE register
set |IE Set 320C3x |E register

set IF Set 320C3x IF register

set IIE Set 320C4x IIE register

set IIF Set 320C4x IIF register
set_IOF Set 320C3x |OF register

set_interrupt_flag

Set ‘C3x Interrupt Flag Bit

st PC

Set processor program counter

st ST

Set processor status register

106

Deve opment Package Manual

FIFO Library Functions

FIFO Link Support

st fifo_link_AF_levels

Set almost-full threshold levels

fifo_link_emit

Send a character to link using handshake

fifo_link_key Get acharacter from link using hand-
shake

fifo_link_spit Send a character to link without using
handshake

fifo_link_eat Get acharacter from link without using
handshake

bleed_fifo_link Drain FIFO into memory buffer

fill_fifo_link Fill FIFO from memory buffer

reset_fifo_link Initialize alink to empty state

get fifo_link_status

Obtain fullness state i nformation

login()

Query subordinate processors for login
sequence

sub_login

Send login sequence to master processor

fifo_link

Return register index to FIFO link for
specified CPU

FIFO Port Support

set fifo_port_ AF_levels

Set almost-full threshold levels

fifo_port_emit Send a character to link using handshake

fifo_port_key Get a character from link using hand-
shake

fifo_port_spit Send a character to link without using
handshake

fifo_port_eat Get acharacter from link without using
handshake

bleed fifo_port Drain FIFO into memory buffer

fill_fifo_port Fill FIFO from memory buffer

reset_fifo_port Initialize alink to empty state

get_fifo_port_status

Obtain fullness state i nformation

Development Package Manual

107

Target DSP Peripheral Libraries

Standard 1/O Library Functions

Category Name Description
Console Termina Control bold Set consol e text bold attribute
Functions
clreol Clear consoleto end of line
clrscr Clear console screen
cursor Enabl e/di sabl e console cursor
get_attibute Get current consol e text attri bute type
gotoxy Set cursor position
normal Set consol e text normal attribute
set_attibute Set current console text attri bute type
wherexy Get cursor position
Low Level I/0 emit Send a character to the terminal emulator
getchar ANSI get character from console
kbd_hit Install vector into vector table
kbd_key Get akey from the terminal emulator
key Get acharacter from the standard mail -
box
putchar ANSI put character to console
C Standard /O Library fclose Close ahost disk file
Emulation Functions
ferase Delete a host disk file by name
fflush Commits an open file /O stream to disk
fopen Open a host disk file for read
fread Read from host disk file into target mem-
ory
fseek Movesthefile pointer to a specified loca-
tion
fwrite Write to host disk file from target mem-
ory
gets ANSI gets from console
printf ANSI printf to console
puts ANSI puts to console
scanf ANSI scanf from console
sprintf ANSI sprintf
sscanf ANSI sscanf
type Send a character string to the terminal

emul ator

Terminal Applet Exten-

get_busmaster_addr

Retrieve host busmaster address from

sons Terminal
plot Transfer data buffer to host for plotting
stdio_reset Reset the Terminal program

stdio_terminate

Send the termination code to Terminal

108

Deve opment Package Manual

DSP Library Functions

Category Name Description
Signal Processing bartl et Bartl ett window generation
Functions
bitrev Bit reversal function
blackman Blackman window generation
buffer_statistics Calcul ate stati stics on a data buffer
ffft_rl Forward Fast Fourier Transform - Real
ffft_r2 Forward Fast Fourier Transform - Com-
plex
fir Finite Impulse Response Fil ter
hamming Hamming window generation
hanning Hanning window generation
harris Harris window generation
ifft_rl Inverse Fast Fourier Transform - Real
ifft_r2 Inverse Fast Fourier Transform - Com-
plex
vmul Multiply two vectorsinto athird vector
Matrix Functions matrix_add Add two matrices and return asum
MATRIX
matrix_allocate Allocate amatrix and return its MATRIX
pointer
matrix_crop Form sub-matrix from alarger matrix
matrix_det Return the determinant of a square matrix
matrix_free Free matrix areaand MATRIX structure
matrix_invert Invert asquare matrix, return inverse
MATRIX
matrix_mult Multiply two matrices, return new

MATRIX

matrix_mult_pwise

Multiply two matrices element by ele-
ment

matrix_print Print the elements of amatrix to stdout
matrix_scale Scale all of amatrix by a constant
matrix_sub Subtract two matrices and return a differ-

ence MATRIX

matrix_transpose

Transpose amatrix, return pointer to new
MATRIX

Queue Support Func- dequeue ptr Remove data from a queue and adjust
tions pointer
enqueue _ptr Load datainto Queue and update pointers
enqueued Return count of data elements in a Queue
gueue_init Initialize memory Queue structure
BERR Sequence Gen- berr_decode Testsa valuein a BERR sequence
eration Functions
berr_encode Generate the next valuein aBERR
sequence
berr_initialize Set up a BERR seguence generator
Data Compression a_compress A-Law data compression
Functions
a expand A-Law data expansion
mu_compress Mu-Law data compression
mu_expand Mu-Law data expansion

Development Package Manual

109

Target DSP Peripheral Libraries

110 Devel opment Package Manual

Host DLL Reference

CHAPTER 9

DLL Functions Grouped by Function

The functions tabularized below may be used in any Host program written in alan-
guage, which supports accessto a Dynamic Link Library. The prototypes for these
functions are listed in the PERIPH\INCLUDE\LIB\TARGET.H file. The names of
these functions are alia of the actual board-specific library function names, which

are proto-typed in PERIPH\LIB\HOST\ALIAS.H.

TABLE 15. Generic DLL Function List

Category | Function Prototype Function Description
Generd BOOL target_open(int target) Opensdriver for specified target DSP
board. Returns boolean.
BOOL target close(int target) Closes driver for specified target DSP
board. Returns boolean
LPVOID target_cardinfo(int target); Returns address of cardinfo structure
for target.
int iicoffld(char *, int target, HWND hPar- | Loads a COFF executable file onto
ent); target DSP
I nterrupt BOOL host_interrupt_enabl e(int target); Enablesaprevioudy installed virtual
Functions interrupt handler.

BOOL host_interrupt_disable(int target);

Disables a previoudly enabled virtua
interrupt handler

void host_interrupt_install(int target,
void (*virtual_isr)(void *), void * con-
text);

Ingtallsavirtual interrupt handler

void target_interrupt(int target);

Interrupts target DSP board

void host_interrupt_deinstall(int target);

Removes avirtua interrupt handler.

void mailbox_interrupt(int target,
unsigned int value);

Interrupts the target DSP after writing
value to special mailbox

unsigned int mailbox_interrupt_ack(int
target);

Acknowledges target to Host inter-
rupt, returns specia mailbox contents

Development Package Manual

11

Host DLL Reference

Control
Functions

void target_reset(int target);

Physically asserts reset on the target
DSP board.

void target_run(int target);

Deassertsreset on the target DSP
board

void target_outport(int target, int port, int
value);

Outputs aval ue to specified DSP
board /0O port address

int target_inport(int target, int port);

Inputs a value from specified DSP
board I/0 port

void target_opreg_outport(int target, int

Outputs aval ue to specified DSP

port, int value); board operation port address
int target_opreg_inport(int target, int port); | Inputs avaue from specified DSP
board operation port

void target_control (int target, int bit, int
state);

Modifiesabit in the control register
of thetarget DSP board

Mailbox
Functions

int read_mailbox(int target, int);

Reads the specified mailbox of the
target DSP board

void write_mailbox(int target, int, int);

Writes to the specified mailbox of the
target DSP board.

BOOL check_outbox(int target, int);

Interrogates the specified output mail-
box status

BOOL check_inbox(int target, int);

Interrogates the specified input mail-
box status

intread_mb_terminate(int target, int, int *,
int wide);

Reads the specified input mailbox, if
full

int write_mb_terminate(int target, int
box_number, int value, int wide);

Writes to the specified output mail-
box, if empty

void clear_mailboxes(int target);

Clears all mailboxesto empty state

int target_key(int target);

Reads terminal mailbox, returnsan 8-
bit contents

void target_emit(int target, int value);

Writes 8-bit value to terminal mailbox

void target_Tx(int target, int val ue);

Writes 32-bit value to termina mail -
box

int target_Rx(int target);

Reads 32-hit value from terminal
mai lbox

Bulk
Transport
Interface

Functions

int BULK_GetNumDevices();

Returns the number of SBC62 USB
devices detected

BOOL BULK_OpenDevice(int iDevice,
HANDLE *phDevice)

Opens a device for BULK transport
access.

BOOL BULK_CloseDevice(IN HAN-
DLE hDevice)

Closes adevice for BULK transport
access

BOOL BULK_OpenChannel (int iDevice,
WORD wChannel, BOOL fOverlapped,
BULK_HANDLE *pHandle);

Opens a data channel in BULK mode

BOOL
BULK_CloseChannel(BULK_HANDLE
Handle)

Closes adata channel opened with
BULK_OpenChannel()

BOOL BULK_Read(BULK_HANDLE
Handle, LPVOID IpBuffer, DIWORD
dwNumber Of BytesToRead, LPDWORD
IpNumber Of BytesRead, L POV ER-
LAPPED IpOverlapped);

Reads ablock of datain BULK mode.

112

Devd opment Package Manual

BOOL BULK_Write(BULK_HANDLE
Handle, LPCVOID IpBuffer, DIVORD
dwNumber Of BytesToWrite, LPDWORD
IpNumber Of BytesWritten, LPOV ER-
LAPPED IpOverlapped);

Writes ablock of datain BULK mode

BOOL

BULK_GetOverl appedReadResult(BULK
_HANDLE Handle, LPOVERLAPPED
IpOverl apped, LPDWORD IpNumberOf -
BytesTransferred, BOOL bWait)

Gets the WIN32 Overl apped Result
for the Read portion of the data chan-
nel.

BOOL

BULK_GetOverl appedWriteResult(BUL

K_HANDLE Handle, LPOVERLAPPED
IpOverlapped, LPDWORD IpNumberOf -
BytesTransferred, BOOL bWait);

Gets the WIN32 Overl apped Result
for the Write portion of the data chan-
nel.

BOOL
BULK_Cancel Io(BULK_HANDLE Han-
die)

Cancelsal pending I/O on the device

BOOL EXPORT STREAM_Open(int iDe-
vice, WORD wChannel, WORD wBuffer-
Size WORD wBlockSize,
BULK_HANDLE *pHandle)

Opens s data channel in STREAM
node.

BOOL Closes a STREAM data channel
STREAM _Close(BULK_HANDLE han-

die)

WORD Returns the amount of space avail able
STREAM_WriteAvailable(BULK_HAND | for Write data

LE handle)

WORD Returns the amount of data avail able
STREAM _ReadAvailable(BULK_HAND | onthe STREAM channel

LE handle)

WORD Writes ablock of datato the

STREAM _Write(BULK_HANDLE han-
dle, INT32 *pBuffer, WORD wElement-
Count)

STREAM channel

void STREAM_Read(BULK_HANDLE
handle, INT32 *pBuffer, WORD wEle-

Reads ablock of datafrom the
STREAM channel

mentCount)
void STREAM_Flush(BULK_HANDLE Writes all the output data to the target
handle)
Sempahore | void get_semaphore(int target, int sema- Gains ownership of specified target
Functions | Phore); semaphore
void request_semaphore(int target, int Requests ownership of specified tar-
semaphore); get semaphore
BOOL own_semaphore(int target, int Interrogates ownership status of speci-
semaphore); fied semaphore
void release_semaphore(int target, int Relinqui shes control of specified
semaphore); semaphore
Talker int target_check(int target); Interrogates for Talker running on tar-
Functions get

void start_app(int target);

Sarts a previousy downl oaded target
application program

int start_talker(int target);

Sartsthe target Talker executing.

int target_revision(int target);

Returnsthe revision of the target
Talker

Development Package Manual

113

Host DLL Reference

114 Deved opment Package Manual

CHAPTER 10

DOS Environment

Requirements

Innovative I ntegration Devel opers Packages, including the T1 C Compiler, make
use of environment variablesin order to | ocate header files monitor script files, etc.
Be sure to s the following environment variableswhen instdling either the C
compiler or I.1. libraries. Note that several of these environment variables may be
automatica ly set when running the SETUP program on the distribution disks.
However, when upgrading from previous versions or when mixing devel opment
componentsfrom |1 or other sources, problems can arise.

Use the table below to insure that you specify all needed environment variables.

Environment
Variable Name Products Affected Suggested settings
DSP_COMPILER | All TI C Compilers set DSP_COM PILER=<compiler dir>
ieset DSP_COMPILER=c:\c6xtools
II_BOARD Dev Pkg Applets set |I_BOARD=<board dir>
ieset II_BOARD=c:\M62cc
C DIR All TI C Compilers set C_DIR=%ii_board%;%ii_board%\include\tar-
All II peripheral get;<compiler dir>
libraries ieset C_DIR=c:\M62cc;c:\M 62cc\include\tar-
get;c:\cbxtools
Specified order iscritical!
C_OPTIONS TI Flit Pt C Compiler | set C_OPTIONS=<switches>
ieset C_OPTIONS=-q x2—-02 -g-SS
A _DIR All TI Assemblers Sameas C_DIR above
D_DIR TI Debuggers set D_DIR=<debugger dir>
(Not Code Composer) | ieset D_DIR=c:\c3xhll

Development Package Manual

115

DOS Environment Requirements

D_SRC All Debuggers set D_SRC=<sourcecode dirl>;<dir2>;...;<dir
n>

ieset D_SRC=c:\M62cc\stdio;c:\M62cc\dsp;
¢:\M 62cc\periph\anal og;c:\M 62cc\periph\digital ;...

;c:\M62cc\periph\bus
PATH All'll products set path=<old path>;<compiler dir>;<board
All TI Tools dir>;<host lib dir>
set

path=%path%;%dsp_compiler%;%ii_board%e;%ii_
board%e\host\lib

TABLE 16. Required disk directory sructurefor Il development tools.

Thell, Tl, and C Development System for the M62 reguires the following environment variabl es be set
properly for correct operation:

sat dsp_compiler=c:\c6xtools

set ii_board=c:\M2cc

set ¢c_dir=%i _board;% i _board%incl ude\target;c:\c6xtools
set a_dir=%i _board;% i _board%incl ude\target;c:\c6xtools
set d_src=c:\Ms2cc\stdio;c:\M2cc\dsp;

c:\ M62cc\ peri ph\anal og; c:\ M62cc\ peri ph\digital;

c:\ Mb2cc\ peri ph\m sc; c:\ M62cc\ periph\flash;

c:\ M62cc\ peri ph\ bus

set c_option=-ss -02 -g X2 —q

pat h=%at h% %sp_conpi |l er% % i _board% % i _boar d% | i b\ host

116 Devel opment Package Manual

CHAPTER 11

M62/cM62 Hardware

M62/cM62 Hardware Functions

The M62 isa PCI bus compatible digital signal processor (DSP) card based around
the Texas Instruments TM S320C6201 processor. Implementing a modular I/0
expansion sysem, the M62 is particularly suited to data acquisition and control
tasks, and is supported by a collection of 1/0O busfunction cards, which provide
hardware interfacing to real-world equipment.

The M62's features include:

TMS320C6201 processor.

Optional external zero wait-state SBSRAM and one wait-gate SDRAM mem-
ory pools.

Two inter-board communicati ons ports (up to 80 Mbytes/sec transfer rate).

Six channels of on-board timing (two on-chip timers, three custom 16-bit timers
in FPGA logic and the 9850 DDS timebase).

OMNIBUS module compatible (two available slots on M62, three on cM62).
32 bits of digital 1/0.
Two serial port connectors.

Externd mux board control connectors (compatible with external TERM multi-
plexer and signal conditioner boards).

JTAG hardware emul ation support.

Development Package Manual

17

M62/cM62 Hardware

The following figure givesa block diagram of the M62/cM62.

BRAM TRAM
avNeus| [ovneus| [ovneus)
a2 || Sa1 || Sao (IMbyte (18vhig
2oy (Qticre) | | (Qpire)
TMS033201
ADEEODDS b
Btard Bs
s
Sid Rt 1
:Q-hth‘tavo|_
JAGRat
AFORAt IO I
Bogson [| Asrc Btard JIAG
SAM Qrregas Goratas
V3R
Inaface
. RIBs |

FIGURE 23. M62/cM62 Block Diagram

ThecM62 is aCompact PCl compatible verson of the M62 board. The cM62 retainsall of the features
of the M 62 but isintended for use in Compact PCI host systems. In addition to the M62 feature set, the
cM62 includes an additional OMNIBUS slot (dlowing up to three OMNIBUS modules to be instal led
on asingle cM62 board).

For brevity’s sake, this section will refer to both cards asthe M62. Any differences in functionality
between the two boards (support of the third 1/0 bus site, different types of connectors, etc.) will be
noted as required. In addition, the PCl and Compact PCI buses are collectively referred to as the PCI
bus.

Memory Map

The M62 processor operates in * C6201 HPI boot mode with memory map of type 1. In this mode, the

processor’smemory isavailableto the PCl host computer via the processor’s host port interface (HPI).

The on-chip memory ismapped starting at address 0. Applications programs are | oaded via the HPI by
the host whilethe cardisin reset mode. Once the program is loaded, reset is deasserted by the host and
the processor boots from on-chip RAM darting at address 0.

118

Devd opment Package Manual

M62 Hardware Initialization Requirements

Thefollowing figure gives the processor memory map of the M 62 for external peripheralsand memory.
Please note that this table ignores any on-chip resources.

Function Address Memory Space
FIFOPort 0x400000 CEO
V360 Registers 0x1400000 | CE1
FIFOPort Reset 0x1410000
FIFOPort Enable 0x1420000
OMNIBUS Control (reserved) 0x1430000

External Mux Control O 0x1440000

External Mux Control 1 0x1450000
AD9850 Reset 0x1470000
AD9850 Frequency Update 0x1480000
AD9850 Write Clock 0x1490000

Digitd 1/0 Data Register 0x14A0000

Digital 1/0 Direction Control 0x14B0000

Digital 1/0 Tnput Latch Clock Control Register | 0x14C0000
Transmit FIFOPort PEN* Mode 0x14D0000
Receive FIFOPort Level Status 0x14D4000
Transmit FIFOPort Level Status 0x14D8000

16 bit PIT Timers 0x14F0000

Externa Tnterrupt Input 4 Select 0x1500000

External Tnterrupt Input 5 Select 0xI1510000

Externa Interrupt Input 6 Select 0x1520000

Externa Tnterrupt Input 7 Select 0x1530000
OMNIBUS Strobe 0 0x1540000
OMNIBUS Strobe 1 0x1550000
OMNIBUS Strobe 2 0x1560000
OMNIBUS Strobe 3 0x1570000
OMNIBUS Strobe 4 0x1580000
OMNIBUS Strobe 5 0x1590000
OMNIBUS Strobe 6 0xI5A0000
OMNIBUS Strobe 7 0x15B0000
OMNIBUS Strobe 8 (cM62 only) 0x15C0000
OMNIBUS Strobe 9 (cM62 only) 0xI5D0000
OMNIBUS Strobe 10 (cM62 only) 0x15E0000
OMNIBUS Strobe 11 (cM62 only) 0xI5F0000

Async SRAM (128Kx32) 0x1600000
SDRAM (16Mbyte) (optional) 0x2000000 | CE2
SBSRAM (IMbyte) (optional) 0x3000000 CE3

TABLE 17. M62 External Memory M ap

M62 Hardware Initiali zation Requirements

The M62 design requires the following valuesto be written to its hardware control registersin order to
provide access to on-board hardware:

Development Package Manual

M62/cM62 Hardware

Register Address Value

EMIF Global Control 0x01800000 0x00003069
CE1 Control 0x01800004 0x73E70F22
CEO Control 0x01800008 0x11010410
CE2 Control 0x01800010 0x00000030
CE3 Control 0x01800014 0x00000040
SDRAM Control 0x01800018 0x07117000
SDRAM Refresh 0x0180001C 0x00000618
Interrupt Polarity 0x019C0008 0x0000000F

TABLE 18. M62 Bus Control Register Initialization Values

Thesevalues areinitialized automatically by C programs compiled under the M62 Development Pack-
age software libraries. Be sure to include initidization of these values whenever softwareis deve oped
outside the Devel opment Package or when a JTAG hardware assiged debugger is employed for code
downloading to the M62. (i.e. when using Code Composer or any other JTAG debugger package)

External Memory

The M 62 offers three types of externd memory: asynchronous SRAM (ASRAM), synchronous DRAM
(SDRAM), and synchronous burs SRAM (SBSRAM). The 128Kx32 ASRAM memory comes stan-
dard with the M62, whilethe SBSRAM and SDRAM are optional .

ASRAM is used by the M62 as abuffer for bus master and slave data movement on the PCI bus. The
ASRAM isaccessble by the V360 PCI bus interface device, all owing the processor to setup bus master
data transfers, which are handled as aDMA-gyletransfer by the V360. The M62 utilizesthe ‘C6201's
HOLD/HOLDA bus grant feature to provide ASRAM access to the V360. In addition, the ASRAM
memory actsas atarget for slave accesses by other PCI bus magters (either the host processor or other
adapter cards).

The optional SBSRAM and SDRAM memories provide large, fast areas to store copi ous amounts of
data or program information. The SBSRAM and SDRAM memories are not accessible by the PCI
interface.

The *C6201 processor operates in big endian addressng mode, allowing 8, 16, and 32 bit wide data
movement to and from external SBSRAM and SDRAM memory. Async SRAM supports 32-bit
accesses only, asdoes the V360 PCI bus interface.

M62 OMNIBUS

The M62 1/0O bus provides a modul ar, high-speed expansion areawhich is directly tied to the proces-
sor’s bus and which is ideally suited for /O hardware expansion. Direct memory-mapped accesses
allow the processor to transfer data to and from 1/0O bus peripheral s constructed as plug-in modules,
which can be mixed and matched to suit the particular user’s functional requirements.

120 Devel opment Package Manual

M62 OMNIBUS

The OMNIBUS slots are accessed as memory-mapped peripherals with the M62 providing four
decoded chip sdect signds per slot. The following figure gives the memory map for the OMNIBUS
slots, and shows the decoded signd to d ot mapping.

Function Starting Address Module Slot
OMNIBUS Strobe O 0x1540000 0]
OMNIBUS Strobe 1 0x1550000 0
OMNIBUS Strobe 2 0x1560000 0
OMNIBUS Strobe 3 0x1570000 0
OMNIBUS Strobe 4 0x1580000 1
OMNIBUS Strobe 5 0x1590000 1
OMNIBUS Strobe 6 0x15A0000 1
OMNIBUS Strobe 7 0x15B0000 1
OMNIBUS Strobe 8 (cM62 only) 0x15C0000 2
OMNIBUS Strobe 9 (cM62 only) 0x15D0000 2
OMNIBUS Strobe 10 (cM62 only) Ox15E0000 2
OMNIBUS Strobe 11 (cM62 only) Ox15F0000 2

TABLE 19. M62 |/O Bus Memory M apping

Each module site provides a 32-bit wide data bus connection to the processor’s data bus, with 12 bits of
low-order address signals for additional decoding beyond the four chip select Sgnals avail able per dot.
Each module also connects to a* C6201 serial port (serial port zero for dot zero, and serid port 1 for
slots1 and 2) to allow serial port driven 1/O. Busreset, RDY, R/W, and processor clock signas are
avallable, as are power connectionsfor digital 5V and analog +-5V and +-15V. Timebase connections
include timer channd s from both the custom 16-bit timers and the 9850 direct-digital syntheszer.

Each OMNIBUS slot hasa 50 pin undedicated connector (JP17 on dot 0, JP21 on slot 1, and JP32 on
slot 2) for usein providing external I/O to/from amoduleinstalled in theslot. The slot's1/O connector
isinturn pinned out to a50 pin .100” square double row header (JP18for dot 0, JP22 for slot 1) onthe
M62 and to 50 pin mini SCSI style connectors on the cM62 (JP18 for dot 0, JP22 for dot 1, and JP33
for slot 2). The M62 also provides 15 pin external connectors for each slot which dlow the highest
numbered 15 signals on the header connectorsto be pinned out external to the host computers chassis.

Connector pinouts for the module sites are provided in the gppendices. Individual pin functionsare
noted in the tables, and in generd the OMNIBUS pinout represents a direct connection to the ‘C6201
local bus.

M62 OMNIBUSMemory Mapping

Since the ‘C6201 processor is abyte addressable machine, which implements its address bus based on a
32-bit trandfer width (i.e. the address bus startsat A2 and separate byte enable pins are supplied to con-
trol accesses to individud bytes within the 32-bit wide location denoted by the address bus), users mugt
take care when writing software which performs OMNIBUS accesses.

The OMNIBUS specification requires 32-bit accesses and does not support byte or half-word (16-bit)
accesses. No support isincluded in the specification for the ‘ C6201’s byte enable pins. This meansthat
software performing accesses must always perform 32-bit transactions with the OMNIBUS modules.

Development Package Manual

121

M62/cM62 Hardware

When writing C code for the M62, programmers should use only variables of typeint or unsigned int (or
their derived types). All accesses should be word justified (the least significant nibble of the address
must always be a multiple of four). Accessesgenerated using pointers to variables of type char, short,
or long will cause erroneous non-32-bit accesses. Correct OMNIBUS modul e operation under these sit-
uationsis not guaranteed.

It should be noted that memory decoding within the OMNIBUS decode regions uses 32-bit addressing
and that the memory map tables given in the OMNIBUS Hardware Manual should be treated appropri-
ately. For example, the description of the OMNIBUS DIG module notes that the byte 3 direction con-
trol register for amodule installed in site 0 ismapped to address IOMOD2 + 3. This address should be
literally interpreted as 0x156000C, where IOMOD2 isequal to 0x1560000 and the offset adds decimal
12 (three 32-bit words of offset). IOMOD2 + 3 should NOT be interpreted as 0x1560003, since the off-
set is3 32-bit words, not 3 bytes.

Thisaddressing is mogt easily handled in C by using integer pointers and integer pointer arithmetic,
which will always result in the required address alignment. For example, the following code defines a
pointer and accesses the byte 3 direction control regiger with the documented off set:

unsigned int * pointer = 0x1560000;

*(pointer + 3) = 0x0; * set byte 3 to output mode */

The actual accessed memory location is 0x156000C, due to the way pointer math is handled in C.

OMNIBUS Power

The OMNIBUS interface providesfive separate power supplies for use by modules along with two sep-
arate ground return connections. The following table liststhe supplies and their power ratings. A sepa-
rate digital 5V supply is provided along with separate digital grounds to minimize the digital noise
present on the analog power supplies.

Pin Name Voltage Current Rating (max)
DVCC 5V (digital) | (System dependent)
+12 12v (System dependent)
-12 -12V (System dependent)
AVCC 5V (andlog) | 500 mA

-AVCC -5V 500 mA

+AV +15V 330 mA

-AV -15V 330 mA

TABLE 20. |/O Bus Power Ratings

Please note that the AGND and DGND busses are separated on the M62 and for proper ground refer-
encing they must be tied together on modul es which use the anal og power supplies (any supply other
than digitd 5V, 12V, or —12V). Innovative I ntegration recommends that a ferrite bead (Panasonic EX C-
ELSA35V or equivalent) be used on custom modules to connect the two ground busses in order to pre-
vent high frequency digital noise on the DGND bus from polluting the clean AGND return.

122

Devd opment Package Manual

FIFOPort 1/0 Expansion

FIFOPort 1/0 Expansion

The FIFOPort feature provides a buffered bidirectional 16-bit interface which allows externd hardware
or other M62 boards to communicate with the M62 at high datarates. A single input FIFO isprovided
to buffer incoming strobed parallel data, while a FIFOPort compatible output supports clocking data to
external hardware or other FIFOPorts. Access to the ' C6201 timer I/O pinsis provided to support sim-
ple bit I/O requirements.

The following diagram illustrates the FIFOPort’s operation. The FIFO buffer memory serves to clock
incoming dataand store it for use by the ‘C6201. Datais formatted as a 16-bit wide data bus synchro-
nous with an rising edge strobe signal, which acts asthe FIFO load dock. The output portion conssts
of the same two signals output data plus the strobe signal for thereceiving end of the port.

FIFO Port Connector

External Input Data Output Data
FIFO Level and Strobe and Strobe
Status
PE— -
To processor Receive FIFO T4FCT 244 74LVT244
FIFO Level (512x16) Buffers Buffers
Status
‘C6201 Data Bus ‘C6201 Timer 1/0

FIGURE 24. FIFOPort Block Diagram

The FIFOPort also provides externa accessto receive the FIFO’s empty, full, and programmabl e almost
full flagsto allow hardware to monitor the FIFO'slevel satus. The port can also receive FIFO level sta-
tus from external hardware to allow the * C6201 processor to monitor level status of FIFOs located of f
the M62 card. Both the onboard receive FIFO levd status and the off board FIFO status lines may be
polled or may generate interrupts to the * C6201 processor.

In addition to the FIFO data management functions, access to the * C6201 timer I/O pinsis provided to
support smple bit I/0 requirements. The timer 1/O pins are buffered through LVT family logic buffers
and driven on or off the card for use where individud bit 1/O control is needed for the external hard-
ware.

Also available on the FIFOPort connector is an external interrupt input, which is connected to the pro-
cessor’s interrupt switch matrix. This external interrupt input allows the C6201 to receive an active
low interrupt from external hardware.

Development Package Manual

123

M62/cM62 Hardware

Transmitting and Receiving FIFOPort Data

Datais transmitted and received on the FIFOPort by means of processor address location 0x400000.
EMIF read and write accesses (due to either CPU or DMA activity) cause read and write srobes to be
generated to the FIFOPort circuitry only when thisaddressis accessed.

In the case of awrite access, an active high output strobe is generated on the external connector and 16-
bit bus data is driven out to the output bits. This data should be latched by external hardware on theris-
ing edge of the FIFOPort output strobe. Write accesses do not affect the current state of thereceive
FIFO.

In the case of aread, an input read strobe is generated to the receive FIFO and its output data latched by
the processor. If the dataitem being read in the current cycle isnot thelagt item gored in the buffer, the
next dataitem is dlocked out by the FIFO and held ready for the next read access by the processor. Read
accesses do not generate output strobesto the external connector.

Please note that the data returned by the FIFO on aread access is present on the | east significant 16-bits
of the processor’sdata bus. The most sgnificant 16 bits are not driven and are not defined. If 32-bit
CPU accesses are being used to read data from the FIFO, then the upper 16 bits of the result should be
masked off before use. The DMA controller may be progranmed for 16-bit access width and will auto-
matically perform 16-bit to 32-bit data translation. Each stored 32-bit wide data item retrieved will be
the concatenation of two 16-bit vaues read from the FIFO.

If thereceive FIFO grows empty, thelast dataitem’svalue will be output on any subsequent read
accesses.

Monitoring FIFO Status

The FIFOPort providesa FIFO level monitoring feature, which alows software to read the receive
FIFO'slevel indicators as well as FIFO levd data from external hardware (if connected). Thereceive
FIFO' sempty, full, and programmable almost full flags can be read at any time by the CPU. Theinter-
rupt selection matrix may dso be programmed to notify the CPU of level events viaan interrupt (see
Interrupts section for moreinformation). The same functionality is provided for the external FIFO,
allowing the CPU to read back or be interrupted by any of the six different level state conditions.

The FIFO levd status is monitored using two registers, one for the receive FIFO and onefor the trans-
mit FIFO (if connected). The register bit definitions are given below.

Bit Number: 314 3 2 1 0
Bitpidd:| Reserved | RCV_AF | RCV_FULL | RCV_HF | RCViEMPTY|

FIGURE 25. Recdve FIFOPort L evel Status Register

124

Devd opment Package Manual

FIFOPort 1/0 Expansion

Bit Field

Name Function

RCV_EMPTY | Receive FIFO Empty Flag (1 = empty, 0 = not empty)

RCV_HF Receive FIFO Half-full Flag (1 = not half full, 0 = at Teast half full)
RCV_FULL Receive FIFO Full Flag (1 = not full, 0= full)

RCV_AF Receive FIFO ATmost-full Flag (1 = ailmost-full, 0= not almost-full)

TABLE 21. Receive FIFOPort Level Status Regiger Definition

Bit Number: 31-4 3 2 1 0

Bit Field: Reserved | TX_AF | TX_FULL | TX_HF | TXfEMPTY|

FIGURE 26. Transmit FIFOPort L evel Status Register

Bit Field

Name Function

TX_EMPTY | Transmit FIFO Empty Flag (O = empty, 1 = not empty)

TX_HF Transmit FIFO Half-full Flag (0 = not half full, 1 = at least half full)
TX_FULL Transmit FIFO Full Flag (1 = not full, 0 =full)

TX_AF Transmit FIFO Almost-full Flag (1 = almog-full, 0= not dmost-full)

TABLE 22. Transmit FIFOPort Level Status Register Definition

Thereceive FIFO leve bits are read directly from the FIFO hardware on the corresponding FIFOPort,
while the transmit FIFO bits are read from thelevel input pins on the FIFOPort connector. |If no exter-
nal statusis being reported by the hardware connected to the FIFOPort, then these bitswill read asones
(onboard 10K pullup resistors hold the transmit input pinshigh). If external FIFO level reporting is not
desired, the level inputs may be used for application specific bit inputs to report other hardware satus
conditions or trigger interrupts on the M62 processor. Note that thisisin addition to the dedicated timer
I/0O pins and the processor interrupt input pin on the FIFOPort connector, which remain available
regardless of the use of the FIFO statusinputs. The digital return leve s given for the transmit FIFO
assume connection to another ‘Céx card manufactured by Innovative Integration, or to hardware emu-
lating similar FIFO levd reporting.

With gopropriate programming, the FIFO levels may also be monitored using processor interrupts. The
three status bits for each FIFO in each direction are availabl e as sourcesto theinterrupt sel ection matrix
for each processor. Thistechniqueis typically used to drive DMA transfersto and from the FIFOPort,
where one FIFO statusinterrupt triggers one or more transfers usng DMA synchronization. Alterna-
tively for CPU interruptswherethetarget CPU in atransfer wantsto beinterrupted when data (or space)
isavailableinthe FIFO. Thiswould betypical of “one-shot” FIFO transfers, where asinglefull FIFO's
worth of dataistransferred at once. Thereceiving processor needs to be notified when the FIFO
reached the full state so that a read operation on the other side of the FIFO may commence. For more
information on using the FIFO leve s to trigger interrupts to the * C6201 processors, see the Interrupts
section.

Development Package Manual

125

M62/cM62 Hardware

FIFOPort Reset

The receive FIFO may be cleared and its condition reset at any time by accessing the FIFOPort reset
register at address 0x1410000. Thedatawrittento the register isnot criticd: awrite accessof any data
to this address will reset the FIFO. Upon reset, the FIFO levels are deared, the flags change to reflect
the FIFO empty status, and the programmable almost full control veriables are reset to default values
(see below for more informeation).

FIFOPort Enable

After aboard reset or power up and prior to reading datafrom the receive sde of the FIFOPort, software
must enabl e data output by accessing the FIFOPort enable register at address 0x1420000. Either aread
or write access to the register may be used to enable the FIFOPort. Daareads issued to the FIFOPort
prior to enabling the port will clock buffered data out of the port (if any datais stored in the FIFO) but
the datawill not be read correctly by the processor.

Controlling the FIFOPort Programmable Almog-full Flag

In addition to the fixed function empty and full flags, the FIFOPort provides a programmabl e al most-
full flag, which can be used to enable notification on partial FIFO transfer lengths. This feature is par-
ticularly suitable to DMA block transfers on the FIFOPort because it maximizes the transfer rates on
both sides of the FIFO by keeping the buffer partialy filled.

The almost-full flag operates as follows: given two initialization bytes (X and Y), the FIFO outputs an
almost-full/almost-empty flag function, which isactive whenever the FIFO contains X or lesswords of
data or 512-Y or morewordsof data. By programming the X value equal to the almost-full level and
the Y valueto zero (0), the FIFO's programmabl e flag effectively becomesa variable partid full indica-
tor. For example, programming the X variableto 128 and the Y variable to zero (0) yields aquarter-full
output function.

The programmabl e almost-full flag control variables for the transmit half of the FIFOPort areinitidized
by enabling PEN mode, then writing the variablesto the FIFOPort. PEN mode is enabled by writing a
zero to thetransmit FIFOPort PEN mode register at address 0x14D0000. The X variable isthen written
to the FIFOPort, followed by the Y variable, with both data values being 8-bits wide and right justified
onthebus. Thedefault valuesfor the X and Y variablesare both 64 (the FIFO revertsback to these val-
ueson areset). Following the completion of the Y variable write, PEN mode should be disabled by
writing a oneto the PEN mode register. Please note that the almost-full flag variables may only be writ-
ten immediately after aFIFO reset has been issued to the tranamit side FIFO and before any dataiswrit-
ten to the transmit FIFO.

Note: the above description of the PEN mode register operation was a changeto the M62 control logic
made in April 1999. Boards purchased earlier than this date should be returned to Innovative for an
update. Please contact Innovative with questions concerning this feature.

Please notethat thisinitidization operation only affects the transmit FIFO (i.e. the FIFO on the external
hardware or other M62 or Quatro62 card). The FIFOPort architecture does not allow the onboard pro-

126

Devd opment Package Manual

FIFOPort 1/0 Expansion

cessorsto initialize the programmable level s of the FIFOPort receive FIFOs. Thisinitialization is
always performed by the external hardware prior to writing data to the receive FIFO.

Timer 1/0 and the FIFOPort

The FIFOPort al so provides a connection to the processor’stimer |/O pins. Thisallows designers of
hardware connecting to the FIFOPort easy access to four bits of unidirectional 1/0 for control purposes
and status reporting. The on-chip timers of the ‘C6201 may be programmed to generate or receive
clock and count events on the pins, or the pins may be used for general purposes bit 1/O.

The M62 implements LV T family buffering between the timer 1/O pinsand the FIFOPort connector.
Output and input levels are TTL compatible, but the outputs will not drive beyond 3.3V on the high
side, and aretolerant of input voltages of up to 5V. Thisfeature makesthe FIFOPort timer 1/0 pins suit-
able for direct interfacing to 3.3V or 5V TTL compatible logic. Such logic familiesas HCT, LSTTL,
FCT, ABT, and ACT may be directly connected to the FIFOPort timer 1/0O pins.

Designing External Har dwar e for usewith the FIFOPort

Use caution when designing external hardware, which isto be connected to the FIFOPort. The signals
present on the interface connector are extremely high speed and failure to handle them appropriatel y can
cause functional problems with the FIFOPort as well as the M62's onboard components. Innovative
does not recommend driving cables directly as cgpacitive load and ringing issues can cause corruption
of the transmitted data. FIFOPort connector pinouts have been provided in the appendices.

The M62 provides mechanical mount holes suitable for usein ataching daughterboard style printed cir-
cuit boards to the FIFOPort connector. The combination of the FIFOPort connector retention and the
mount hole positioning allow designers to easily create interface modules for use in adapting the
FIFOPort connector to external hardware.

The following diagram gives mechanical dimensionsfor a FIFOPort compatible daughter PC board.

2.3%

012> |«

0.1 o
-0

= Pin 1 location
1.32

® @
0.1 |« - < 0.1

kdount hole = 0.115 inch (#4)
All Measurements in Inches
Not to Scale

+/-0.005 inch tolerance

FIGURE 27. FIFOPort Daughterboard M echanical Dimensions

Development Package Manual

127

M62/cM62 Hardware

FIFOPort Timing

The following diagrams give timing information for the FIFOPort circuitry. This datais derived from
device specifications and is not factory tested.

FIFO reset
[
N tr

|
2
Input strobe |
Input data >< DataValid ><

twe

x*
3
x*

Output strobe | |
) s s tep
‘Cox AWE |
tsuo L~ two NERNRS
I~ -1 “1=~ 1
Output data >< DataValid ><

FIGURE 28. FIFOPort Timing

Parameter min (ns) max (ns)
tHI 0

tpD 7

tsuo 10!

tHo ot

two 10!

TABLE 23. FIFOPort Timing Parameters

Notes. Dependent on EMIF programming for CEO space as well as processor cycle frequency. These
values are determined from recommended EMI F register values.

128 Devel opment Package Manual

Serial Ports

Serial Ports

The ‘C6201's on-chip serial portsare pinned out to connectors JP15 (port 0) and JP16 (port 1) for use
with external hardware. The serial portsare also connected to the OMNIBUS slots for use with mod-
ules designed to interfaceto the processor serially.

Pinouts for the serial port connectors are given in the appendices. 1nnovative recommends buffering
these ports with off board hardware in order to preserve signal integrity.

The following diagram shows the mechanical dimensions for a suggested printed circuit board outline
for use in providing buffering of serid bus sgnalsto external hardware.

174
0.1 I%O%
:i% & g P, IR Iﬁ-ﬁ
248
0.10
iy L @
tef 0.1

Top view, seral port connectors facing down (mounted on opposite face of board)
Maunt hale = 4.115 inch (#4)

Conneclors arrayed al 2mm spacing (pin 1 localions shown’

All Mezsurements in Inches

Natto Scale

+-0.0058 inch Inlerance

FIGURE 29. Serial Port Daughterboard M echanical Dimensons

Timers

The M62 provides atotal of six channels of independent timebase generation on board for usein timing
data acquisition, servo controls, real-time counters, and other applications. The functionality isdivided
into three devices: two 32-bit timer channels on the * C6201 processor, three custom 16-bit timer chan-

nels in externd logic, and a 32-bit direct digital synthesizer (DDS) channel in the AD9850 device. This
section discusses the AD9850 and external timers: for more information on the on-chip timers, see the

TMS320C6201 Peripherals Reference Guide.

Development Package Manual

129

M62/cM62 Hardware

On-chip Timers

The on-chip timers are availablefor use as software timebases and interrupt generators. They are also
pinned out to connector JP31 for use with external hardware. All four processor timer pins are available
on JP31, dlowing applications to use each timer as a time base output, an event counter input, or asbit
I/0. Thetimer pins are also available on the FIFOPort connector for use in controlling external hard-
ware dtached to the FIFOPort. Refer to the appendix for pinout descriptions.

16-bit Timers

The M62 implements three, custom, 16-hit timers onboard, external logic which are capable of trigger-
ing processor interrupts and acting as clock sources for the 1/O modul es and external hardware. The
timers provide readback capability for the current count register, which dlowsthemto be used as digital
event counters. Each channel may be driven either by an onboard 10 MHz clock source or by external
clock input. In addition, external gating sgnal are available for each timer channel which allow an
external TTL signal to selectively enable or disable thetimer’s clock input to control counting.

All three timers consist of 16-hit decrementing free-running counters with matching 16-bit period regis-
ters driven by a source timebase. The timers decrement once per input clock until they reach zero,
whereupon they automatically reload from the period register and continue counting down. The timer
output is normally high and falls low for one source clock cycle upon expiration of the counter value.
The source clock may be selected from either a 10 MHz onboard timebase or an external input pin. The
source clock is optionally gateable via a second set of gate inputs. The gating and clock input options
allow the externd timersto act as event countersfor external hardware.

The following table shows the memory map for the timer control registers.

Function Address

Clock Mode 0x14F0000
Channel 0 Period 0x14F0008
Channdl 1 Period 0x14F000C
Channdl 2 Period 0x14F0010
Channel 0 Count 0x14F0014
Channdl 1 Count 0x14F0018
Channel 2 Count 0x14F001C

TABLE 24. External Timer Control Registers

The clock mode register controls the source of the dock used to drive each channel. Data busbit DO
controls channel zero, D1 controls channel one, and D2 controls channel two. Writing a zero to abit
sd ects the onboard 10 MHz clock source asthetimers clock input, while writing a one selects the exter-
nal INCLKXx inputs available on the digital I/O connector. The INCLKXx inputs allow for each of the
three channel s to be driven by independent clocks from external hardware. For example, writing the
hex vdue 0x2 to the clock mode register selects the 10 MHz clock as the source timebase for channels
zero and two, while channel oneisdriven by the INCLK1 signd.

130

Devd opment Package Manual

Timers

The timer period registers are used to store the period values for each timer channel. Each timer’sout-
put pulse period is equal to the period register value plus two source clock cycles. For example, if the
clock moderegigter for channel zero was programmed to select the 10 MHz clock as the source dock
for channel zero, and the period register were programmed with the value 98. Then timer channel
zero'soutput pulse would occur with a period of (98 + 2) source clock cycles, or afrequency of

10 MHz/(98 + 2) = 100 kHz

The highest legal value for the period regigter is 65534 (yielding alowest possible output frequency of
152 Hz when using the 10 MHz onboard source clock). Please note that a period register write causes
an immediate counter reoad (i.e. the counter immediately starts counting down from the new period
value).

The timer gate inputs allow externd signal s to control when the counter will decrement. Pulling the
gate line low will disable clocking of the appropriate timer channd. The gateinputsare individually
pulled up to 5V viaa 10K resistor.

Thetimer output signals (TMRO, TMRL, and TMR2 for channel s zero, one, and two respectively), input
clock gating signals (GATEO, GATEL, and GATE2), and input clocks (INCLKO, INCLK 1, and
INCLK?2) areall availablefor externa connections on thedigital I/O connector. Refer to the appendices
for details on the pinouts.

AD9850 Direct Digital Synthesizer

The AD9850 direct digital synthesizer (DDS) is a precision programmable clock source, which is capa-
ble of generating frequenciesin the range of 0 to 25 MHz with aresolution of 0.019 Hz/step. Unlikea
digital counter-timer chip, which uses adigital counter to divide down ahigh input clock rate, the DDS
uses phase-locked-loop synthesizer technol ogy to tune asine wave oscillator based on a 32-bit digital
word. Thismethod realizesalinear output frequency over input range rather than the nonlinear one
associ ated with counter-timer chips, whose resolution drops dramatically asthe period register used to
program them falls. The counter-timer device has a nonlinear frequency step change over itsinput code
range, as opposed to the DD S device, which maintainsa linear frequency step for each input codeincre-
ment. This resultsin the counter-timer’sincreased resol ution at the high end of itsinput code range,
with acorrespondingly low resolution at thelow end. The AD9850 timebase should be sel ected for use
when afarly fast but very precise and accurate clock is required by the application.

The AD9850 is mgpped into /0O space as shown in the table below. The device is interfaced using the
parallel I/0 method, with an address to write data, oneto trigger frequency/phase updates, and one to
control the reset pin of the device.

Function I/O Space Address
AD9850 Reset 0x1470000
AD9850 Frequency Update 0x1480000
AD9850 Write Clock 0x1490000

TABLE 25. AD9850 Control Registers

Development Package Manual

131

M62/cM62 Hardware

Thewrite clock address latches frequency/phase datainto the AD9850 one byte at atime. Theleast sig-
nificant eight bits of the processor bus carry the bytewide data. The frequency update address causes
the output frequency and phase of the DDS dlock to update to the values contained in itsinput latches.
The reset address causes an active high reset pulse to be generated to the AD9850. All three registers
are write-only.

The M62 Development Package includes aroutine (t i mebase()) which makesit easy to set the
AD9850's output frequency.

Digital I/0

The M62 includes 32 bits of software programmable digital 1/0 for use in controlling digital ingtru-
ments or acquiring digital inputs. The digital 1/0 port controls are mapped into memory space using
three addresses: one to read/write the digital 1/0 data asa single 32-bit word, one for direction control
for each byte of the port, and one for controlling the source of the clock edge used to latch input data
into the digital 1/O port register. The following table lists the addresses and their functions.

Function Address
Digital 1/0 Data Register 0x14A 0000
Digital 1/0 Direction Control 0x14B0000

Digita 1/0 Input Latch Clock Control Register 0x14C0000

TABLE 26. Digital 1/0 Control Regisers

The direction control register providesfor software control of the drive direction of the port. The least
significant four bits of the register control the four bytes available onthe /O port. Bit DO setsthedirec-
tion for the least significant eight bitsif the port (port bits 0-7), D1 the next least significant bits (8-15),
D2 the next least significant (16-23) and D3 the most significant (24-31). Each byteisindividually con-
trollable by writing azero (to sd ect output) or aone (to select input) to the respective bit in thedirection
control register. For example, if the value OxC were written to the direction control register, bits 0-15
would act as inputs while bits 16-31 would act asoutputs. All bytes default to input mode upon board
powerup or reset.

The data register allows software to directly read datafrom port pins programmed for input, or write
data to pins programmed for output. Read operations performed from the data register on port bytes
programmed for output will return the current value of the digitd 1/0O latch (i.e. the last value writtento
that portion of the port). For example, suppose that the direction control was programmed to OxC and
the data register written with the data word 0x12340000. Since the mogt significant 16 bitsare setup as
outputs, those pins on the port connector would assume the value 0x1234. A subsequent read of the
port would yie d the va ue 0x1234xxxx, where xxxx is the value of the signal s present on the digitd 1/0
connector.

Theinput latch clock register allows the user to select either software read clocking or external hard-
ware docking. Writing a zero to the register selects software clocking, while writing a one sdects
external hardware clocking. If software clocking is selected, then the port latches programmed for i nput

132

Devd opment Package Manual

External Mux Control

will clock inthe digita datapresent on the external pinsat the beginning of a read cycle executed on the
port data register (30-50 ns before the data is returned to the processor, depending on processor d ock
speed). |If external clocking is sdected, then the port will latch dataon the faling edge of the TTL sig-
nal EXT_DIG_RD_CLK* on thedigital 1/0 connector. The datawill be held for the processor to read
until the next low-going edge of the EXT_DIG_RD_CLK* signal. In the external hardware clocking
mode, read operations by the processor do not affect the contents of the digital 1/0 latch. The latched
data may be reread as many times asis required, and only another EXT_DIG_RD_CLK* pulse will
cause new data to be latched into the port.

The 'FCT16952 devices used toimplement the digitd 1/O port are capable of sourcing 32 mA and sink-
ing 64 mA per pin.
Digital 1/0 Timing

The following diagram givestiming information for the digital 1/0 port when used in external readback
clock mode (see above for details). This datais derived from device specifications and is not factory
tested.

Externd
Readback Clock

tsu Sl ty
Input data >< DataVdid ><

FIGURE 30. Digital 1/O Port Timing

Par ameter min (ns)
tsy 0
tH 10

TABLE 27. Digital 1/O Port Timing Parameters

External Mux Control

The M 62 provides two external multiplexer control bus connectors for use with the TERM line of exter-
nal multiplexer boards. Control for the multiplexer connectorsis provided at the addresses listed inthe
following table.

Development Package Manual

133

M62/cM62 Hardware

TERM Module | Function 1/O Space Address

0] Mux #0 Channel Sdect 0x14D0000
Mux #1 Channel Sdect 0x14D0004
Mux #2 Channel Sdect 0x14D0008
Mux #3 Channel Sdect 0x14D000C
All Muxes Channdl Select 0x14D0010
Reset 0x14D001C

1 Mux #0 Channdl Sdect 0x14E0000
Mux #1 Channel Sdect 0x14E0004
Mux #2 Channel Sdect 0x14E0008
Mux #3 Channel Sdect Ox14E000C
All Muxes Channdl Select 0x14E0010
Reset 0x14E001C

TABLE 28. TERM Function Memory Map

The control connectors (JP25 for TERM module 0 and JP26 for TERM module 1) select multiplexer
channel numbers. The firg four addresses from the start of each mux control address map allow the
sd ection of incoming signals on each multiplexer device on the TERM. Thefifth address location
allows the simultaneous selection of the same channel on all multiplexer devices. Theremaining
address performs a global reset of the TERM hardware.

Refer to the OMNIBUS Manual for additional information regarding the use of Innovaive s TERM
modul eswith the M 62.

Interrupts

The ‘C6201 processor implements four interrupt input pins, which allow external hardware eventstoo
directly trigger software activity. Processor interrupt inputs are supported on the M62 through a set of
control registers and multiplexers, which all ows appli cation software to dynamically select the source
of the signal which will drive each particular interrupt input.

The available interrupt source signals are as follows:

1. Externd interrupt input pins 0-3 (from the I/O modul es).

2. Externd timer channels 0-2.

3. 9850 direct digital synthesizer clock.

4. PCI businterrupt.

5. Variousreceive and transmit FIFOPort level status.

Devd opment Package Manual

Interrupts

The following table shows the addresses of the control registers for each processor interrupt input. A
value written to the appropriate control register causesthe interrupt mux to seect the interrupt source
given in the next two table (see below). Note that the selections vary depending on which interrupt

input is being programmed.

Function Address

External Tnterrupt Input 4 Select 0x1500000
Externa Interrupt Input 5 Select 0x1510000
Externa Tnterrupt Input 6 Select 0x1520000
External Tnterrupt Input 7 Select 0x1530000

TABLE 29. External Interrupt Input Control Registers

Interrupt Control

Register Value Interrupt Source

0 External Tnterrupt Tnput O

1 Externd Interrupt Input 1

2 Externd Tnterrupt Tnput 2

3 External Tnterrupt Tnput 3

4 External Timer O

5 Externd Timer 1

6 External Timer 2

7 9850 DDS Clock

8 PCI bus

9 Receive FIFOPort empty

10 Receive FIFOPort half full
11 Receive FIFOPort full

12 Receive FIFOPort amost-full
15 Deactivated (interrupt held high)

TABLE 30. Interrupt Source4 and 5 Select Register Values

Interrupt Control

Register Value Interrupt Source

0 Externd Interrupt Input O

1 Externd Tnterrupt Tnput 1

2 External Tnterrupt Tnput 2

3 Externd Interrupt Input 3

4 Externa Timer O

5 External Timer 1

6 External Timer 2

7 9850 DDS Clock

8 PCI bus

9 Transmit FIFOPort empty

10 Transmit FIFOPort half full
11 Transmit FIFOPort full

12 Transmit FIFOPort almost-full
15 Deactivated (interrupt held high)

TABLE 31. Interrupt Source6 and 7 Select Register Values

Development Package Manual

135

M62/cM62 Hardware

For example, if the application requires the output from external timer channel two to drive processor
interrupt input five, the value six should be written to memory location 0x1510000. All interrupt con-
trol registers default to setting 15 (disabled) on powerup or board reset. Note that the processor inter-
rupt signal s generated by the logic are active low (falling edge trigger), and the* C6201 interrupt
polarity control register must be programmed to the value OxF to correctly receive interrupts.

JTAG Test Bus

The M62 implements a JTAG 1149.1-compatibl e scan path loop through the onboard * C6201, with con-
nector compatible with the specification provided in the TMS320C6201 User’s Guide. When connect-
ing a JTAG controller card cable (from an Innovative Integration Code Hammer debugger card, Texas
Instruments X DS-510, or other vendor’s JTAG hardware), the JP11 connector is used. A shunt should
always be ingalled on jumper JP13 when the JTAG debugger isin use.

Note: the M62 design boots the * C6201 processor using the HPI boot mode. On device power up or
reset, it is not possible to gart JTAG debugger software until after the HPI boot process has been com-
pleted. The softwarewill return with“cannot init target” error message if it is started after the processor
has been released from reset, but before the processor has finished the boot process. Innovative Integra-
tionincludes asmall bootstrapping utility (BOOT.EXE) inthe M62 Zuma Toolset which will bootload a
small test appli cation onto the M62 and which should be used prior to starting the debugger after areset.

M62 PCI Bus Features

The M62 uses the V360 PCI bus bridge chip, along with external glue logic and asynchronous SRAM,
to implement itsinterface to the PCI bus. The V360 acts as a bridge chip to trand ate accesses from the
PCI bus into accesseson the ‘C6201 bus. It also performs DMA style data transfers between PCI
address space and the M62's asynchronous SRAM. Accessto the * C6201's HPI port through the V 360
is used by host applications to bootload software into the * C6201.

PCI Bus1/O and Memory Map

The M62 uses the V 360 base address registers and address apertures to map three sets of functionality
into PCI bus 1/0 and memory space: the V360 internd registers, the async SRAM memory, and the pro-
cessor’ shost port interface. Address assignments are made to the board via PCI configuration cycleson
system powerup, or by the host operating system. The following descriptions of the addressed features
assume aworking knowledge of PCI plug and play technology as well as any host operating system
support provided by the system in use. The M62 Development Package provides host drivers and
access support, which is highly recommended to shorten software devel opment time.

The V360's internal regiger set is mapped into I/0 space on the PCI bus using base address register
zero (PCI_IO_BASE in the V360 data sheet), and allows hogt access to all of the features of the bridge
chip. Host accessesto the I/O space in which the regi sters are mapped result in d ave responses from the

136

Devd opment Package Manual

M62 PCI Bus Features

V360 device. The lowest part of the register set dso providesa convenient access point to the PCI con-
figuration space registers of the device.

The async SRAM ismagpped into host PCI memory using base address register one (PCI_BASEQin the
V3 literature). This dlows the host processor to gain slave mode access to the SRAM memory on the
M62 for data transfers, and allows other expansion boardsto act as bus masters to the M62 for direct
datatransfers. Accesses madeto the PCI mapping address by either the host processor or another bus
master reult in slave responses from the V360. An async SRAM access resultsin a HOLD/HOLDA
arbitration request by the V360 device to the ‘C6201. The slave access will be held not ready until the
‘C6201 hasdropped into hold mode and rel eased accessto the M62’s processor bus. The V360 then
compl etes the required transfer between the PCI bus and the async SRAM and releasesthe HOLD
request t the * C6201.

Please note that the * C6201 must be in a Sate whereit i s capable of releasing bus ownership to the V360
for the PCI bus accessto complete normally. Do not set the NOHOL D bit in the EMIF Global Control
Regiger prior to attempting slave accesses from the PCI bus. Also note that the base address register
used to map the async SRAM into PCl bus space requests 32-bit address mapping, which meansthat
32-hit capable host software is required to access the async SRAM memory.

The ‘C6201's HPI feature is a so mapped into PCl bus memory, using the V360’ s base address regi ster
2 (PCI_BASE1 in the V360 data sheet). The foll owing table gives the mapping of the various HPI reg-
isters within the PCl bus address space.

PCI BusBAR1 Offset | Function

0x0 HPIC

0x4 HPIC

0x8 HPIA Tow half word

0xC HPIA high half word

0x10 HPID Tow half word, with address autoincrement
Ox14 HPID high half word, with address autoincrement
0x18 HPID Tow half word, without address autoincrement
0x1C HPID high half word, without address autoincrement

TABLE 32. HPI Port PCI Bus Mapping

Accesses within the PCI mapped HPI interface result in slave responses from the M62. The various
registers of the HPI interface are mapped as shown in the above table, and have the read/write limita:
tions noted in the TM S320C62xx Peripheral s Reference Guide. The HPI interface allows accessto both
the standard HPID interface (without address auto-incrementing) and to the HPID mapping which
causes the current address regi ster to be incremented automatically with each data access.

The HPI port interface uses software ready monitoring to poll the current status of the interface. Host
software must poll the status of the HRDY bit in the HPIC register to determine if a current accessis
finished and a new access may be garted.

Development Package Manual

137

M62/cM62 Hardware

M62 Bootstrapping

The M62 processor operates in HPl boot mode and supports direct host access to the processor’s HPI
port viamemory mapped registers on the PCl bus. This feature allowsthe host to access any ‘C6201
memory location and is intended for processor bootstrapping.

The *C6201 boot processinvolves thefollowing steps:
1. Togglethe processor reset active, then inactive.

2. Viathe HPI interface, place abootstrap compatible codeimage in the processor’s internd memory
starting at address zero.

3. Oncethe code has been placed in processor memory, write aone tothe DSPINT bit in theHPIC reg-
ister to wake the CPU from thereset state. The processor will then begin software execution starting
at address zero in internal memory.

Although the HPI M AP1 boot mode begins running software from onchip memory, it ispossibleto load
code anywhere in offchip memory. Thisisprovided that the bus control registers for the memory area
in question areinitialized prior to any writes viathe HPI interface

There is a complete host COFF compatible M62 bootl oad routine included in the M62 Devel opment
Package which facilitates * C6201 processor bootl oading.

138 Devel opment Package Manual

CHAPTER 12 Appendices

Board Layout

A schematic of the board layout is displayed onthe following page. Pleasereview
this schematic to familiarize yourself with the circuit board’s configuration.

Development Package Manual 139

Appendices

| O}IS 3INPON
SNEINWO

| BUs S|NPON
SNAINWO

500 + 010 01
i

ae- A
oo+ 1w ()

au
e
a6 300 G0

uolP8UU0D
ovir

7w“u

| eys
/cozowc:oo
JeuseIxgy

N

— SNEINWNO

0 dus

/CO_«OGCCOO

leusalxg

SNEINWO

AINO a)s pJed uolPBUU0D
1S31 404 adep8u| O/ lexbia
1O03ANNOD Hodo4id JswiL
10N Od
UoI}08UU0D
Jurjouks

[euss 4Sa

¥ NNLvaQ

0 8¥s SINPoN
SNAINWO

0 dys 10} | 9YS 10}

103u0D XNIN jos3u0) XNIN

[eulsixy leusaix3

Devd opment Package Manual

140

Connector pinouts

Connector pinouts

JP17,JP18, JP21, JP22, P1, P2 - OMNIBUS I/O Connectors (M 62 only)

Connector types:

Number of pins:

Mzating connector:

JP17, JP21: AMP .05 Subminiature D male
JP18, JP22: .100" header

P1, P2: Male DB15 connector

JP17, P21: 50
JP18, JP22: 50

P1, P2: 15

JP17, P21: AMP 173279-3
JP18, JP22: AMP 1-746285-0

P1, P2: AMP 747909-2

Thefollowing table showstheinterconnections between the JP17 (OMNIBUS slot 0) and JP21 (OMNI-
BUS dot 1) module /0O connectors and their respective external |/0 connectors, JP18 and P1 (OMNI-
BUS dot 0) and JP22 and P2 (OMNIBUS dot 1).

JP17,JP21 JP18, JP22Pin | P1, P2 Pin
Pin Numbers | Numbers Numbers
1-35 1-35 NA

36 36 1

37 37 9

38 38 2

39 39 10

40 40 3

41 41 11

42 42 4

43 43 12

44 44 5

45 45 13

46 46 6

47 47 14

48 48 7

49 49 15

50 50 8

TABLE 33. OMNIBUS /O Connector Pinouts

Development Package Manual

141

Appendices

JP17,JP18, JP21, JP22, JP32, JP33 - OMNIBUS I/O Connectors (cM 62 only)

Connector types: JP17, JP21, JP32: AMP .05 Subminiature D male

JP18, P22, IP33: AMP Amplimite Series 111

Number of pins: JP17, P21, JP32: 50

JP18, P22, JP33: 50

M ating connector: JP17, P21, IP32: AMP 173279-3
JP18, P22, JP33: AMP 750737-5
The following table showsthe interconnections between the JP17 (OMNIBUS dot 0), JP21 (OMNI-

BUSdot 1), and JP22 (OMNIBUS dot 2) I/O connectors and their respective external 1/0O connectors,
JP18 (OMNIBUS slot 0), JP22 (OMNIBUS dot 1), and JP33 (OMNIBUS slat 2).

JP17, JP21, JP18, JP22,
JP32 Pin JP33 Pin
Numbers Numbers
1-35 1-35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 a7

48 43

49 49

50 50

TABLE 34. OMNIBUS /O Connector Pinouts

The following diagram gives the physical pin locations for JP18, JP22, and JP33 connectors on the
cM62 board. Please notethat these physicd pin postions do not use the same numbering scheme as
standard SCSI 50 pin connectors.

142

Devd opment Package Manual

Connector pinouts

pin 26

0 <4—pinl
pin 27| O

<4—pin2

[eXe)

pin 49| O O|4— pin24
pin50p| O O|4— pin25

Not to scale. Front view of 1/O connec
edge of the board towards the top of the

FIGURE 31. OMNIBUS /O Connector Pin Configuration

JP19, 20, 23, 24, 34, 35- OMNIBUS Bus Connectors

Connector types: AMP .05 Subminiature D male
Number of pins: 50
Mzéting connector: AMP 173279-3

Thefollowing table givesthe pin numbersand functions for the P19 (OMNIBUS slot 0), JP23 (OMNI-
BUSdot 1), and JP34 (OMNIBUS dot 2) (available only on the cM62) connectors. The functionsfor
JP23 and JP34 areidentical to those of JP19, except where noted.

Development Package Manual 143

Appendices

IP34Function | rection
Pin Number JP19 Function JP23 Function | (cM62 only) (from M62)
1,19 Digital +5V O, power
2,20 Digital ground O, power
3-18 Databus 0-15 I[e]
21, 43, 40, 45, | Addressbus 2-8 @]
39, 26, 27
28 Reset (active Tow) O
29 External interrupt O External inter- | Externd interrupt 4 | |

rupt 2
30 Busready (activelow) I (open-col-
lector)
31 Processor CLKOUT274 (@)
32 PIT timebase channel 0 (@)
33 RIW* (@)
34 9850 timebase @]
35-38 [OMODO-3 decoded [OMOD4-7 [OMODS8-11 O
selects (active low) decoded selects | decoded selects
(active low) (activelow)

25 -12V O, power
23 +12V O, power
41,42 Analog ground O, power
22,24 Analog -15V O, power
44,26 Analog +15V O, power
47,49 Analog +5V O, power
48,50 Analog -5V O, power

TABLE 35. /O Module Bus Connectors

Thefollowing table gives the pin numbers and functions for the JP20 (OMNIBUS slot 0), JP24 (OMNI-
BUSSdlot 1), and JP35 (OMNIBUS slot 2) (available only on cM62) connectors. Thefunctionsfor JP24
and JP35 are identical to those of JP20, except where noted.

JP35 Function Direction
Pin Number JP20 Function JP24 Function (cM 62 only) (from M 62)
1,36 Addressbus 9-13 O
2, 19, 20, 49, Digita ground O, power
50
7-18 Reserved Reserved Reserved NA
21 PIT timebase channel (@)
1
22 External trigger O External trigger 1 External trigger 1 O
23,25 +12V (from PCI bus) O, power
24 CLKSO CLKS1 CLKSI I
26 CLKRO CLKR1 CLKR1 1[©]
27 FSRO FSR1 FSR1 1’0

144

Deve opment Package Manual

Connector pinouts

28 CLKXO0 CLKX1 CLKX1 /0
29 Externa interrupt 1 External interrupt 3 | Externa interrupt 5 I
30 DRO DR1 DR1 |
31 FSX0 FSX1 FSX1 /0
32 DXO0 DX1 DX1 O
33-48 Databus 16-31 1710

TABLE 36. /O Module Bus Connectors

JP14 —Digital 1/0 Connector

Connector type:

Number of pins:

Mzéting connector:

0.100" sguare double row shrouded header

50

AMP 1-746285-0

The following table gives the pin numbers and functions for the JP14 connector.

Pin Number | JP14 Function Direction (from M62)
1-32 Digitd 170 bit 0..31 1’0
33 Externa Trigger O Input (activeTow) I
34 9850 DDS Clock Output O
35 Externa Trigger 1 Input (activelow) I
36, 38, 40 Externa Timer Ch. 0, 1, 2 Clock Outputs @)
37,39, 41 External Timer Ch. 0, 1, 2 Gate Inputs [
42,44, 46 Externa Timer Ch. 0, 1, 2 Timebase Inputs | |
45 Externa Digital Readback Clock (active I

low)
47 Digitd +5V Power
49 Digital Ground Power
43, 48,50 Reserved NA

TABLE 37. Digital 1/0 Connector

Development Package Manual

145

Appendices

JP31 —Miscellaneous Digital /O Connector

Connector type 0.1" square header
Number of pins: 10
Mzéting connector: AMP 111811-1

The following table gives the pin numbers and functions for the JP31 connector.

Pin Number | JP31 Function Direction (from M 62)
1 Externa Trigger O Input (activelow) I

2 External Timer 0 Clock Output (@)

3 On-chip Timer 1 Out O

5 On-chip Timer 11n I

7 On-chip Timer 0 Out (@)

9 On-chip Timer OIn I

4,68 Reserved NA

10 Digital Ground Power

TABLE 38. Miscellaneous Digital 1/0 Connector

JP15, JP16 — Processor Serial Port Connectors

Connector type: 10 pin shrouded header
Number of pins: 10
M ating connector: AMP 746285-1 (for ribbon cable termination) or Samtec SSQ style

(for board-board applications)

The following table gives the pin numbers and functions for the JP15 and JP16 connectors. Pin func-
tions of JP16 are identical to those of JP15 except where noted.

146 Devel opment Package Manual

Connector pinouts

Pin Number | JP15 Function JP16 Function Direction (from M 62)
1 CLKS0 CLKS1 I

2 FSRO FSR1 /0

3 CLKRO CLKR1 1’0

4 FSX0 FSX1 /0

5 CLKXO0 CLKX1 /0

6 Digital 3.3V Power
7 DRO DRO I

8 Digital 5V Power
9 DX0 DXO0 (0]

10 Digital Ground Power

TABLE 39. Processor Serial Port Connector

JP11 - JTAG Debugger Connector

Connector type:

Number of pins:

Mzéting connector:

14 pin shrouded header

14

AMP 746285-2

Thefoll owing table gives the pin numbers and functions for the JP11 connector. This connector follows
the recommendations given in section 13 of the TMS320C62xx Peripherals Reference Guide.

Pin Number | JP11 Function Direction (from M62)
1 ™S I

2 TRST* I

3 TDI I

5 Digitd +3V Power

7 TDO (@]

9,11 TCK I

13 EMUO 70

14 EMU1 I’'0

4,6, 8, 10, 12 | Digitd ground Power

TABLE 40. JTAG Debugger Connector

Development Package Manual

147

Appendices

JP30 — FIFOPort Connector

Connector type:

Number of pins:

Mzéting connector:

The following table gives the pin numbers and functions for the JP30 connector.

2mm header

54

Samtec SQW style

Direction (from
Pin Number | JP30 Function M62)
1 Digital 5V Power
2,44 Ground Power
3-18 Input Data Bits 15-0 I
19 Reserved NA
20 Input Strobe I
21 On-chip Timer 1 Out @]
22 On-chip Timer 11n |
23 On-chip Timer 0 Out (@]
24 On-chip Timer O In I
25-40 Output Data Bits 0-15 (@]
41 External Tnterrupt Tnput I
42 Output Strobe 0]
43 Digital 3.3V Power
45 Half-full Flag Out O
46 Almost-full Flag Out @]
47 Almost-full Level Control Tn |
48 Full Flag Out (0]
49 Almost-full Level Control Out | O
50 Empty Flag Out (@]
51 Half-full Flag Tn I
52 Almost-full Flag In I
53 Empty Flag Tn I
54 Full Flag Tn I

TABLE 41. FIFOPort Connector

148

Devd opment Package Manual

TMS320C6201 Limitations and Errata

TMS320C6201 Limitations and Errata

As of thiswriting, the TM S320C6201 processor has several limitations and errata that can affect the
maximum clock rate at which the processor can successfully run and which may impede the proper
operation of certain software applications. This section discusses limitations discovered in Innovative
Intergration’s tegting of early M62 prototype cards, as well as errata announced by Texas Instruments
regarding the current 2.0 revision silicon.

Thisinformation is being supplied to current customers and potential users of the M62 in an effort to
keep you informed of the state of * C6201 processor devel opment and any performance limitations
imposed on the M62 hardware design. Innovative Intergration will continuously update thisinforma-
tion as new data becomes avail able and particularly when new silicon revisions are rel eased by Texas
Instruments to usfor testing.

Processor Speed Limitations and External Memory

The current revison 2.0 silicon * C6201 devices have bus timing issues which prohibit the use of full
speed external synchronous burst SRAM (SBSRAM) and synchronous DRAM (SDRAM) devices.
These limitations affect the maximum processor speed Innovative will be able to ship with current pro-
cessors, dependent on the external memory configuration of the M62 hardware as ordered by the cus-
tomer.

Specifically, Texas I nstruments has announced that SDRAM support is limited to approximately
90MHz operation (180 MHz processor speed), while SBSRAM operation is limited to 133 MHz (133
MHz processor speed). These figures were determined through board level testing at the Texas Instru-
ments facility.

Testing of hardware at | nnovative | ntegration showstha SDRAM is supported at least through 80 MHz
(160 MHz processor speed), while SBSRAM has been tested up to arate of 80 MHz (160 MHz proces-
sor speed with SBSRAM in half-rate mode). Tegting at a processor speed of 133 MHz with SBSRAMs
running in full rate mode has shown a read/write failure rate of about 10-ppm. Texas Insruments has
specified that not all SBSRAMs arereliable in their tests, 0 it is possible that the devices Innovativeis
currently using may not be up to spec. Innovative isin the process of procuring SBSRAM sampl es of
the manufacturer and type used by Texas Instruments and will continue testing of the external memory
interface to determine which devices are morereliable. In addition, Innovative will be procuring addi-
tional clock source devices, which will allow thetesting of intermediate processor speeds (180 MHz,
for example).

Current processors are capabl e of 200 M Hz operation and have been tested at this rate on the M 62
design. These tests involve running software strictly from on-chip memory. The external peripheral
interfaces (1/0 bus sites, serial ports, FIFOPorts, onboard peripherals, async SRAM, PCI interface) are
unaffected by the memory interface issue asthey useless aggressve bustiming.

Innovative I ntegration’s policy on processor speed isto deliver the fastest possible speed consistent
with the requested external memory configuration on the board. In Stuations where customers order
external memory, Innovative must downgrade the processor speed to match the memory interface limi-
tations. Current processor gpeeds avail able versus memory requirements are as follows:

Development Package Manual

149

Appendices

External Synchronous

Memory Type Delivered Processor Speed

None 200 MHz

SDRAM 160 MHz

SBSRAM 160 MHz (SBSRAM operating in half-rate mode)

As Innovative continues testing the memory subsystems of the M62, these rates may change to improve
the memory access and processor speeds.

Texas | nsruments Device Errata

The current Texas | nstruments device erratafor the most current revision silicon TM S32C6201 devices
is attached below. At thistime Innovative Integration does not consider these errata to be significant to
the overall operation of the card design.

150 Devel opment Package Manual

TMS320C6201 Silicon Errata

TMS320C6201 SILICON ERRATA

The following is a list of problems on TMS320C6201 3.1 silicon or any lower revision. TI creates a new
document revision when a new silicon bug is discovered. However, Tl does NOT update previously edited
files. For example, if you have silicon revision 2.0 and the latest silicon revision is 3.1, you should look at
the latest silicon errata for 3.1, as it will also contain any problems found in silicon version 2.0.

Silicon revision is identified by a code in the lower left-hand corner of the chip. The code is of the format
Cxx-yyww. If xx is 31 then the silicon is revision 3.1. If xx is 20, 21, 30 then the silicon is revision 2.0, 2.1,
OR 3.0 respectively.

The Revision ID of the CPU (which is NOT the same as the silicon revision) can be found in the Revision
ID field of the Control Status Register (CSR). Please refer to the TMS320C62x/C67x CPU and Instruction
Set Reference Guide for details about the Control Status Register. The following table shows the silicon
revision and its CPU Revision ID:

Silicon Revision CPU Revision ID found in CSR

C6201 Revision 2.1 1

C6201 Revision 3.0 2

C6201 Revision 3.1 2

The CPU Revision ID only shows the revision of the CPU. Please note that 6201 Silicon Revision 3.0 and
3.1 have the same CPU Revision ID, since the same CPU is used in both silicon versions. Users should
only refer to the silicon revision number, and not the CPU Revision ID, when using this document.

Please also request the latest TMS320C6201 Peripheral Reference Guide and any Errata.
Note:
« New items in this document are

= Problem 3.1.8

= Problem 3.1.9

% Problems in revision 3.0 silicon not fixed in revision 3.1 have been re-numbered as 3.1.x problems.
This creates gaps in the 3.0.x problem numbering sequence.

% All remaining 3.0.x problems are fixed on revision 3.1.

« All remaining 3.1.x problems will be fixed on a future device. At present there is no specific plan for a
future version.

© Texas Instruments 12 May, 1999 1

Redistribution or alteration not permitted.

TMS320C6201 Silicon Errata

List Of Bugs

YAV IS o] I T AT T o] T = 0 o S 3
Problem 3.1.1 DMA: Issues when pausing at a block boundary...............ccoeiiii e 3
Problem 3.1.2 DMA: Transfer incomplete when pausing a Frame Synchronized transfer in mid-frame...... 3
Problem 3.1.3 DMA Multi-frame Split-Mode transfers source address indexing not functional.................... 3
Problem 3.1.4 DMA: Stopped transfer reprogrammed doesn’t wait for SYNC..........ccoecvvveeeeeiiiciiieeee i, 4
Problem 3.1.5 DMA freezes if post-increment/decrement across port boundarycccccoeviiiiieiieiiinnine. 4
Problem 3.1.6 DMA paused during emulation haltcoeeeeiiiie e e 4
Problem 3.1.7 DMA: RSYNC=10000b (DSPINT) doesn’t wait fOr SYNC.........c.coucuuiiiiiiaiiiiiiiie e 4
Problem 3.1.8 EMIF: Invalid SDRAM access to last 1kByte of CE3.........cccccceeiiiiiiiiiiie e 5
Problem 3.1.9 Cache During Emulation with Extremely Slow External Memoryccccccoeviiiiiienee e, 5
REVISION 3.0 SIlICON BUQJS ..vuvvvvieiiiiiiiiiiiiieieresesesseeseeeeeeeseeseeeerererererereteeetetetetetatttetatatetatetetetetees trereresreeeerereens 6
Problem 3.0.8 EMIF: Inverted SDCLK and SSCLK at Speeds above 175 MHzZ..........cccoociiiiiiiiiinieee 6
Problem 3.0.9 CPU: L2-unit long instructions corrupted during interrupt.........ccccceveeveiciieeee e veciieee e e 8
REVISION 2.1 SIlICON BUGSuteeeeiiiiiiee ittt ettt ettt e e sttt e et b e e s sbb e e e e sbbeeeasbe eessbeeesssbeeeeans 9
Problem 2.1.1 EMIF: CE Space Crossing on Continuous Request Not Allowed...........cccccceevvviiieeeee e, 9
Problem 2.1.2 EMIF: SDRAM INVAIIH GCCESS.cutuiieiieaeee ittt e e ettt e e e e e ettt e e e e e e e eaeebeeeeaaeeeaneneeeeeeas 9
Problem 2.1.4 DMA: RSYNC cleared late for Frame Sync’'d transfer.........cccocciiieiee i 9
Problem 2.1.5 McBSP: DXR t0 XSR cOPY NOt gENEIAteU.........uiiiiiiiiiiiiiii it 10
Problem 2.1.6 DMA Split-Mode End-of-frame INAeXiNg........cccuuieiieeiiiiiiiiieee s 11
Problem 2.1.7 DMA Channel 0 Multi-frame Split-Mode InCompletionccccoeiiiiiiiie e 12
Problem 2.1.8 Timer clock output not driven for external ClocK...........ccccveei i 12
Problem 2.1.9 Power Down pin PD not set high for Power Down 2 modecccceeeiiiiiiiiieeeee e 12
Problem 2.1.10 EMIF: RBTR8 bit NOt fUNCHONAL.........ccoiiiiiiiiiiiie e 12
Problem 2.1.11 McBSP: Incorrect plaw companding ValUE...........cooiuiiiiiiiie i 12
Problem 2.1.12 Cache: False cache hit — EXtremMElY rare........ccccccoeiiiviiiiie e 12
Problem 2.1.13 EMIF: HOLD feature improvement 0N reViSiON 3ccoiiiiiiiiiiiieeae e e 13
Problem 2.1.14 EMIF: HOLD request causes problems with SDRAM Refresh.......cccccccccovvvciiieire i, 13
Problem 2.1.15 DMA Priority Bit Ignored by PBUS..........c..oiiiiiiiie e 13
Problem 2.1.16 DMA Split-Mode Receive Transfer Incomplete After PaQuseccccoccvvveeeeeeiiiciieinee e e 13
Problem 2.1.17 DMA Multi-Frame Transfer Data LoSt DUFNG StOPoocvvveeiieeiiiiiiieiee e 14
Problem 2.1.18 Bootload: HPI boot feature improvement 0N revisSion 3........ccccceveeviviiieeeeceesiieee e e s 14
Problem 2.1.19 PMEMC: Branch from external to internal ... 14
Problem 2.1.21 DMA: DMA data block corrupted after start with zero transfer count............ccccccveeeennne 15
REVISION 2.0 SIlICON BUGSutieiiiiiiiiee ettt ettt e et b e e s sbbn e e e sbbneeeanee tessbeeessnneeas 16
Problem 2.0.1 Program Fetch: Cache Modes Not FUNCLIONAlccuviiiiie i 16
Problem 2.0.2 Bootload: Boot from 16-bit and 32-bit Asynchronous ROMs Not Functional 16
Problem 2.0.3 DMA Channel 0 Split Mode Combined with Auto-initialization Performs Improper Re-

T T1 (=122 11T o E TSP RT T URTRI 16
Problem 2.0.4 DMA/Program Fetch: Cannot DMA into Program Memory when Running Program From
Q=] 1 = PRSP 16
Problem 2.0.5 Data Access: Parallel Read and Write Accesses to Same EMIF or Internal Peripheral Bus
[WoTor= i o] g IST=To [N LT aTot=To IViVA (o] oo O PSPPSR TPPPRPP 16
Problem 2.0.7 EMIF: Reserved Fields Have INCOrrect ValUES............oocuuiiiiiiiiiiiiiiiie e 16
Problem 2.0.8 EMIF: SDRAM Refresh/DCAB Not Performed Prior to HOLD Request Being Granted 17
Problem 2.0.9 McBSP New Block Interrupt does not occur for Start of BIOCK O.........cccvvvvveeiiiiciiieeee e, 17
Problem 2.0.11 DMA/Internal Data Memory: First load data corrupted when DMA in high priority 17
Problem 2.0.12 McBSP: FRST Improved in 2.1 OVEr 2.0uviiieiiiiiiieee et e et e e e e st e e e e e s 17
Problem 2.0.13 McBSP: /XEMPTY stays low when DXR WIitten Lateccoovveeiiiiiieiiiiie e 17
Problem 2.0.14 EMIF: Multiple SDRAM CE Spaces: Invalid access after refreshcccccvveveeeiiiicinnnnnn. 18
Problem 2.0.18 DMA/Internal Data Memory: conflict data COrrUPtion..........cceeeiiiiieiniieee e 18
Problem 2.0.19 EMIF: Data SEtUP TIMES ...cccoiiiiiieiie e e e ctitie e e e e s st e e e e e e s sttt e e e e e e s e snastaaee e e e e e s e nnnnbesnneeeeas 18
Problem 2.0.24 EMIF Extremely Rare Cases Cause an Improper Refresh Cycle to Occur.............ccoee..e. 18
© Texas Instruments 12 May, 1999 2

Redistribution or alteration not permitted.

TMS320C6201 Silicon Errata

REVISION 3.1 SILICON BUGS

Problem 3.1.1 DMA: Issues when pausing at a block boundary
The following problems exist when a DMA channel is paused at a block boundary:

 DMA doesn't flush internal FIFO when a channel is paused across block boundary. As a result, data
from old and new blocks of that channel are in FIFO simultaneously. This prevents other channels
from using the FIFO for high performance until that channel is restarted. Note that data is not lost
when that channel is started again. Internal reference number C601299.

« For DMA transfers with auto-initialization, if a channel is paused just as the last transfer in a block
completes (just as the transfer counter reaches zero), none of the register reloads take place (count,
source address, and destination address). When the same channel is restarted, the channel will not
transfer anything due to the zero transfer count. This problem only occurs at block boundaries.
Internal reference number C601258.

WORKAROUND: Do not pause across block boundary if the internal FIFO is to be used by other channels
for high performance. For DMA transfers with auto-initialization, if a channel is paused with a zero transfer
count, manually reload all registers before restarting the channel.

Problem 3.1.2 DMA: Transfer incomplete when pausing a Frame Synchronized transfer in mid-
frame

If a frame-synchronized transfer is paused in mid-frame and then restarted again, a DMA channel does
not continue the transfer. Instead, the channel waits for synchronization. If the channel is manually
synchronized, it will properly complete the frame, but will immediately begin the transfer of the next frame
too. This behavior occurs for both a software pause (setting START = 10b) and for an emulation halt (with
EMOD =1). Internal reference number C601257.

WORKAROUND:
» If pausing the DMA channel in software, do the following to restart:

1. Setthe RSYNC bit in the Secondary Control Register.

2. Read the Transfer Count Register and then write back to Transfer Count Register. This would
enable the present frame to transferred but will wait for the next sync event to trigger the next
frame transfer.

3. Set START to 01b or 11b.

» If pausing the DMA channel with an emulation halt, do the following to restart:

1. Double-click on the Transfer Count Register and hit enter (rewrite current transfer count).

2. Set the RSYNC STAT bit in the Secondary Control Register (change OXXXXX4XXX to
OXXXXX1IXXX).

3. Run.

***Note that the order of 1 & 2 is critical for an emulator halt (EMOD = 1), but not for the software pause.

Problem 3.1.3 DMA Multi-frame Split-Mode transfers source address indexing not functional

If a DMA channel is configured to do a multi-frame split-mode transfer with SRC_DIR = Index (11b), the
source address is always modified using the Element Index, even during the last element transfer of a
frame. The transfer of the last element in a frame should index the source address using the Frame Index
instead of the Element Index. DST_DIR = 11b functions properly. Internal reference number C601256.

WORKAROUND: For multi-frame transfers, use two DMA channels instead of using the split-mode.
Source Index works properly for non-split-mode transfers.

© Texas Instruments 12 May, 1999 3

Redistribution or alteration not permitted.

TMS320C6201 Silicon Errata

Problem 3.1.4 DMA: Stopped transfer reprogrammed doesn’t wait for sync

If any non-synchronized transfer (ex: Auto-init Transfer) is stopped, and then the same channel is
programmed to do a Write Synchronized Transfer (ex: Split-mode transfer), the write transfer does not
wait for the Sync event. Internal reference number C601261.

WORKAROUND: Perform a non-synchronized dummy transfer of one element to/from the same location
before starting the synchronized transfer.

Problem 3.1.5 DMA freezes if post-increment/decrement across port boundary

For any DMA transfers with source/dest address post-increment/decrement, if the last element to be
transferred is aligned on a port boundary, then the DMA may freeze before transferring this element. A
port boundary is the address boundary between external memory and program memory, between external
memory and the peripheral address space, or between program memory and the peripheral address
space.

The following conditions cause DMA to freeze:

e For non-sync and frame-sync transfers: if a channel is paused after the second-to-last element is
read, when the channel is then restarted with a request to the address at a port boundary the DMA wiill
freeze.

* For split-mode transfers or read/write-sync transfers: the DMA will freeze while transferring the
element aligned on the port boundary. A continuous burst transfer with post-increment/decrement
source/dest address does not exhibit this problem. Internal reference number C601300.

WORKAROUND: Do not transfer to boundary addresses if the DMA source/dest address is post-
incremented/decremented.

Problem 3.1.6 DMA paused during emulation halt

When running an auto-initialized transfer, the DMA write state machine is halted during an emulation halt
regardless of the value of EMOD in the DMA Channel Primary Control Register. The read state machine
functions properly in this case. The problem exists only at block boundaries. If EMOD=1, this problem is
irrelevant since the DMA channel is expected to pause during an emulation halt. Internal reference
number C601301.

WORKAROUND: There is no workaround for EMOD=0. Expect DMA transfers to pause when the
emulator stops the processor.

Problem 3.1.7 DMA: RSYNC=10000b (DSPINT) doesn’t wait for sync

If RSYNC in the DMA Channel Primary Control Register is set to Host-port host to DSP interrupt (DSPINT
— 10000b), the DMA channel would do the read transfer without waiting for the sync event. There is not a
problem if WSYNC is set to DSPINT. Internal reference number C601302.

WORKAROUND: Do not synchronized DMA reads to DSPINT. If a DMA read is desired during a Host-
port host to DSP interrupt, set RSYNC in the Primary Control Register to one of the EXT_INT events
instead (EXT_INT4 — EXT_INT7) and have the host trigger an interrupt on that pin rather then by writing to
HPIC.

© Texas Instruments 12 May, 1999 4

Redistribution or alteration not permitted.

TMS320C6201 Silicon Errata

Problem 3.1.8 EMIF: Invalid SDRAM access to last 1kByte of CE3

If 16 Mbytes of SDRAM (2 64 Mbit in a 1Mx16x4 organization) is used in CE3 then you can have invalid
accesses to the last 1kByte of CE3 (0xO3FFFCO00).

This occurs when the following is true:
« After a DCAB (Deactivate all pages) to all SDRAM CE spaces (forced by Refresh or MRS command)
* The first access to CE3 is to the last page of CE3 (0x03FFFCQ0).

Then a page activate will not be issued to CE3. Since the SDRAM in CE3 is in a deactivated state at that
point, invalid accesses will occur. Internal reference number C630280.

WORKAROUND:
Best Case: Avoid designing a board with a 64Mbit (1Mx16x4) SDRAM mapped into CE3.

Alternative: If a 64 Mbit SDRAM is located in CE3, avoid using the last 1kByte in the CE3 memory map
(OX03FFFCO00).

Problem 3.1.9 Cache During Emulation with Extremely Slow External Memory

If a program requests fetch packet “A” followed immediately by fetch packet “B”, and all of the following
four conditions are true:

1. Aand B are separated by a multiple of 64k in memory (i.e. they will occupy the same cache frame)
2. Bis currently located in cache

3. You are using the emulator to single-step through the branch from A to B

4

The code is running off of an extremely slow external memory that transfers one 32-bit word every
8000+ CPU clock cycles (CPU running at 200 MHz)

Then A will be registered as a “miss” and B will be registered as a “hit". B will not be reloaded into cache,
and A will be executed twice. This condition is extremely rare because B has to be in cache memory, and
must be the next fetch packet requested after A (which is not in cache memory). In addition, this problem
only occurs if you single-step through the branch from A to B using the emulator, AND if the code is
located in an extremely slow external memory. Internal reference number C630283.

WORKAROUND:
» Do not single-step through the branch from A to B if the above conditions are true.

« Do not use an extremely slow external memory (transfers one 32-bit word every 8000+ CPU clock
cycles) if conditions 1, 2, and 3 are true.

© Texas Instruments 12 May, 1999 5

Redistribution or alteration not permitted.

TMS320C6201 Silicon Errata

REVISION 3.0 SILICON BUGS

Problem 3.0.8 EMIF: Inverted SDCLK and SSCLK at Speeds above 175 MHz

There is a speedpath in the device that causes SDCLK and SSCLK to startup 180 degrees out of phase
(effectively inverted) from the desired waveform. Normally, EMIF outputs are delayed 1/2 CPU clock from
the rising edge of SDCLK/SSCLK to give it adequate hold time while maintaining more than adequate
setup times.

The desired relationship is described in the TMS320C6201B datasheet (SPRS051D, p 37 and p 40) and
illustrated in Figure A and Figure C below. However, in the case where SDCLK/SSCLK becomes inverted
(Figure B and Figure D), control signals only have 1/2 CPU clock of setup to the next SDCLK/SSCLK
rising rather than 3/2 CPU clock of setup. This has two negative affects to interface timing to external
synchronous RAMs.

1) On writes, setup time to RAMs for control signals and write data is reduced by 1 CPU cycle.

Figure A. Write Example - Desired Behavior

CLKOUT1 (CPU Clock) /_W\IL/__/
SS/SDCLK Internal / \ / \ /

\ \
SSISDCLKExtemal ____/~ | _/ | ___/

| |<—tosu—|—toh-H
Output Signals ‘\ /

Figure B. Write Example - Failing Behavior

CLKOUT1 (CPU Clock)

SS/SDCLK Internal / \ / \ /

‘ toh
tosu ‘
Output Signals \ /

SS/SDCLK External

© Texas Instruments 12 May, 1999 6

Redistribution or alteration not permitted.

TMS320C6201 Silicon Errata

2) On SBSRAM/SDRAM reads, data will be sampled on the falling edge BEFORE the rising edge that
would be expected. In this case, the input setup time for data at the C6x is reduced by 1 CPU cycle. Note
that this case can be compounded with Case 1). The control signals could be latched one SSCLK/SDCLK
cycle (2 CPU cycles) late by the memories. Thus, the setup could be reduced by up to 3 CPU cycles and
be more than an entire SSCLK/SDCLK late.

Figure C. Read Example - Desired Behavior

CLKOUT1 (CPU Clock)

SS/SDCLK Internal

SS/SDCLK External / \ ‘/ \ ,
la——tisu

tacc

Read Data X -

Figure D. Read Example - Failing Behavior

CLKOUT1 (CPU ClocK)

SS/SDCLK Internal / \ / \ ,

SS/SDCLK External

tisu
tacc

Read Data e

Note that CLKOUT2 is also affected by this speedpath bug and is 180 degree out of phase. It behaves in
the same way as SDCLK. Internal reference number C601307.

WORKAROUND:

For prototypes raising the core supply to 1.9-2.1V corrects this problem. We DO NOT recommend this
in boards shipped to customers, since the manufacturing process is not designed to be reliable
outside the normal operating range. This option allows the user to verify current board designs at all
valid frequency ranges.

Reduce the operating frequency of the TMS320C6201B until SSCLK/SDCLK has the desired
relationship. Typically this occurs at 175 MHz across the range of recommended operating
conditions.

Since SSCLK and SDCLK are inverted externally relative to each other by design, these signals can
be swapped on external memory interfaces to correct the problem (SSCLK to SDRAM and SDCLK to
SBSRAM). This will cause invalid operation at frequencies below 175 MHz and will not work with
future silicon revisions.

If CLKOUTZ2 is used as an SDRAM clock, follow all the workarounds for SDCLK.

© Texas Instruments 12 May, 1999 7

Redistribution or alteration not permitted.

TMS320C6201 Silicon Errata

ALTERNATE WORKAROUNDS: The following alternate work arounds can help for certain board and
layout configurations.

Using faster (125 Mhz or PC100) SDRAMs and/or SBSRAMs will reduce the chances of data
corruption and/or increase the frequency at which reliable memory operation can be observed.
Operation is not guaranteed to be reliable across operating conditions and different samples of
memory and 6201B devices due to lot to lot variation on both the memory and the 'C6201B.

SDCLK/SSCLK can be delayed externally. This can be accomplished either via inverter(s), precision
delay device, or longer board route on the clock line. The idea is to force the external clock to
resemble the desired clock waveform as closely as possible, providing more setup for both reads and
writes.

You may start the device at a frequency where the skew does not occur and raise the operating
frequency to the desired rate. This must be done at each processor reset. This solution works since
the speed path exists in the reset (non-run time) operation of the SDCLK/SSCLK circuit. Whatever
operations starts at reset is observable until the next reset.

RESOLUTION

Version 3.1 of silicon will correct this problem.

Problem 3.0.9 CPU: L2-unit long instructions corrupted during interrupt

If an interrupt occurs causing a B-side L-unit (.L2 unit) instruction that writes a long value to be annulled,
the top 8 bits of the result will be written rather than being annulled. This bug only applies to the B-side L-
unit (.L2 unit). A-side L-unit (.L1 unit) functions correctly. Internal reference number C620774

This bug will not affect:

Customers programming in C with no long data types.
Customers not using code with long instructions on the .L2-unit.

Customers only using long instructions on the .L2-unit inside loops 5 or less than 5 cycles long.
(Interrupts are disabled in the 5 delay slots of a branch)

WORKAROUND:

Disable interrupts using the appropriate compiler switches, or cregister modifications, in the affected C
code.

Disable interrupts 7 execute packets before any long instructions on the .L2-unit that are NOT in the
delay slots of a branch.

Use the .L1-unit for long instructions if interrupts are anticipated.

RESOLUTION

Version 3.1 of silicon will correct this problem.

© Texas Instruments 12 May, 1999 8

Redistribution or alteration not permitted.

TMS320C6201 Silicon Errata

REVISION 2.1 SILICON BUGS

Problem 2.1.1 EMIF: CE Space Crossing on Continuous Request Not Allowed

Any continuous request of the EMIF cannot cross CE address space boundaries. This condition can
result in bad data read, or writing to the wrong CE. Internal Reference Numbers 2600 & 3421.

WORK-AROUNDS:

CPU Program Fetch: The simplest fix is for all external program to reside within a single CE space.
Alternatively, program fetch flow should not occur across CE spaces. This can be accomplished by
branching on chip in between executing from one CE to another CE.

DMA: All DMA block transfers without read or write synchronization should have all EMIF addresses
within a frame to belong to one CE space. In other words, all read (src) addresses should belong to one
CE space and should not cross CE boundaries. The same applies to write (dst) addresses within a frame.
Note that the source can be in the same CE space or different CE space as the destination. DMA
transfers with read and/or write synchronization together with CE boundaries crossed between frames are
not affected by this bug.

CPU Data Access: External CPU data accesses cannot perform continuous requests and thus are not
affected by this bug.

Problem 2.1.2 EMIF: SDRAM invalid access

An invalid SDRAM access occurs when each of the following is true:
- Two or more SDRAM devices in different CE spaces
- Each SDRAM device has a page activate
- One active page is in bank 0 and the other in bank 1

- Each CE space with SDRAM is accessed (alternating) without a page miss or refresh
occurring (no Deactivate command).

OR
- Two or more SDRAM devices in different CE spaces
- Atrickle refresh deactivates both devices

- Before refresh occurs, a request to access one CE space comes in. The refresh will wait until
the first requestor has completed.

- If request to second CE space occurs before refresh occurs, then an invalid access takes
place, since the controller neglects the fact that this space was deactivated.

Internal Reference Numbers 4139, 0335, and 0871.
WORKAROUND: Avoid use of multiple CE spaces of SDRAM within a single refresh period.

Problem 2.1.4 DMA: RSYNC cleared late for Frame Sync’d transfer

In a frame-synchronized transfer, RSYNC is only cleared after the beginning of last write transfer. It should
occur after the start of the first read transfer in the synchronized frame. Internal reference number 0267.

WORKAROUND: Wait until end-of-frame (perhaps using DMAC pins for external status) to issue next
frame synchronization.

© Texas Instruments 12 May, 1999 9

Redistribution or alteration not permitted.

TMS320C6201 Silicon Errata

Problem 2.1.5 McBSP: DXR to XSR copy not generated

If any element size other than 32 bits is written to the DXR of either serial port, then the register is not
copied to the XSR. Internal reference number 0511.

The following work around is applicable only for non-split mode DMA transfers.
WORKAROUND:
(1) For little-endian mode:

Always write 32 bits to the DXR. When using the DMA, it is possible to perform word transfers, but
increment or decrement the address by one or two bytes using one of the global index registers. If the
serial port is transferring out 16-bit words, which are stored on consecutive half-word boundaries in
memory (either internal or external), the DMA would need to be set up such that it performs word writes to
DXR (ESIZE = 00b). The global index register used would need an element index of 0x0002 (2 bytes). If
an 8-bit data transfer is desired, then element index would need to be 0x0001.

Please note that this workaround assumes that the receive justification, RJUST in the McBSP’s SPCR is
set for right justification (zero-fill or sign-extended). If left justification is chosen for receive data, the DMA
receive src address pointing to DRR should be changed to DRR+3 (which is 0x018C0003 for McBSPO
and 0x01900003 for McBSP1) for byte-size elements and DRR+2 for half-word elements. This ensures
packing data on byte or half-word boundaries for receive data.

Example:
Configure the DMA as follows:
(a) For half-word / byte-size accesses with right justification on receive data:

ch_A: /* for transmit */

src_address = mem_out; dst_address = DXR;
Element_size = WORD

Address_inc_mode = index

Index_reg_value = 2 /* change this to 1 for byte writes */

ch_B : /* for receive */

src_address = DRR; dst_address = mem_in;

Element_size = HALF /* change this to BYTE for 8-b element size */
Address_inc_mode = inc_by element_size

/*inc_by_index whose value is as specified for ch_A above will also work */

(b) For half-word / byte-size accesses with left justification on receive data:
Same as (1)(a) above EXCEPT for:
ch_B : /* for receive */
src_address = DRR+3; /* for byte accesses */ OR
= DRR+2; /* for half-word accesses */

(2) For big-endian mode:

Always write 32 bits to the DXR.

(a) For half-word accesses with right justification on receive data:

ch_A: /* for transmit */

src_address = mem_out;

dst_address = DXR+2; /* 0x018C0006 for McBSPO or 0x01900006 for McBSP1 */

Element_size = WORD

Address_inc_mode = index

Index_reg_value = 2

© Texas Instruments 12 May, 1999 10

Redistribution or alteration not permitted.

TMS320C6201 Silicon Errata

ch_B : /* for receive */

src_address = DRR+2 /* 0x018C0002 for McBSPO or 0x01900002 for McBSP1 */
dst_address = mem_in;

Element_size = HALF;

Address_inc_mode = = inc_by_ element_size

/*inc_by_index whose value is as specified for ch_A above will also work */

(b) For half-word writes with left justification on receive data:
Same as (2)(a) above EXCEPT for:

ch_B : /* for receive */

src_address = DRR;

(c) For byte-size writes with right justification on receive data:

ch_A: /* for transmit */

src_address = mem_out;

dst_address = DXR+3; /* 0x018C0007 for McBSPO or 0x01900007 for McBSP1 */
Element_size = WORD

Address_inc_mode = index

Index_reg_value =1

ch_B : /* for receive */

src_address = DRR+3 /* 0x018C0003 for McBSPO or 0x01900003 for McBSP1 */
dst_address = mem_in;

Element_size = BYTE;

Address_inc_mode = = inc_by_ element_size

/*inc_by_index whose value is as specified for ch_A above will also work */

(d) For byte-size writes with left justification on receive data:
Same as (2)(c) above EXCEPT for:

ch_B: /* for receive */

src_address = DRR;

Problem 2.1.6 DMA Split-Mode End-of-frame Indexing

If a DMA channel is configured to do a multi-frame split-mode transfer, both the Receive and Transmit
transfers will generate an end-of-frame condition. This will cause the FRAME COND bit to be set multiple
times per frame in the Secondary Control Register of the channel.

Also, if DST_DIR = Index (11b), the end-of-frame condition by both the Receive and Transmit Transfers
will cause a destination address to be incremented using Frame Index, rather than Element Index. The
problem is that BOTH the last element in a frame for the Receive Read Transfer (split source to
destination) AND the last element in a frame for the Transmit Write Transfer (source to split destination)
will cause the destination address to be indexed using the frame index. This should only occur for the last
element in a frame for the Receive Read Transfer. Internal reference number 0559.

WORKAROUND: If the FRAME COND bhit is used to generate an interrupt to the CPU and/or the frame
index and the element index on the destination address are not the same for a split-mode transfer, use
two DMA channels.

© Texas Instruments 12 May, 1999 11

Redistribution or alteration not permitted.

TMS320C6201 Silicon Errata

Problem 2.1.7 DMA Channel 0 Multi-frame Split-Mode Incompletion

If DMA Channel 0 is configured to perform a multi-frame split-mode transfer, it is possible for the last
element of the last frame of the Receive Read to not be transferred. After the last element of the last
frame of the Transmit Write Transfer, the element count is reloaded into the Channel 0 Transfer Counter
Register, which may allow for the Transmit Read Transfer to be initiated. If the read synchronization and
write synchronization are far enough apart in CPU cycles, then it is possible for the DMA to hang (due to
the Transmit Read) before the Receive Write gets its sync event and completes the transmission. Internal
reference number 0558.

WORKAROUND: If a multi-frame split-mode transfer is required, use DMA channel 1, 2, or 3.

Problem 2.1.8 Timer clock output not driven for external clock

When FUNC =1 (TOUT is a timer pin), if CLKSRC = 0 (external clock source) the TOUT pin is not driven
with TSTAT. The timer still functions correctly, but the output is not seen externally. Internal reference
number 0568.

WORKAROUND: None. Timer functions correctly.

Problem 2.1.9 Power Down pin PD not set high for Power Down 2 mode

The power down pin, PD, only goes high (active) in power down mode 3, not in power down mode 2.
Internal reference number 0537.

WORKAROUND: None. Power down modes function correctly.

Problem 2.1.10 EMIF: RBTRS8 bit not functional

If RBTR8=1, a requester with continuous requests will not relinquish control of the EMIF even to a higher
priority requester. Internal reference number 0432.

WORKAROUND: Leave RBTRS8 set to the default of 0.

Problem 2.1.11 McBSP: Incorrect pLaw companding value

The C6201 McBSP u-Law/A-Law companding hardware produces an incorrectly expanded u-Law value.
McBSP receives u-Law value 0111 1111, representing a mid-scale analog value. Expanded 16-bit data is
1000 0000 0000 0000, representing a most negative value. Expected value is 0000 0000 0000 0000.
McBSP expands u-Law 1111 1111 (also mid-scale value) correctly. u-Law works correctly for all encoded
values, except for Ox7f. Internal Reference Number 0651.

Problem 2.1.12 Cache: False cache hit — Extremely rare

If a program requests fetch packet “A” followed immediately by fetch packet “B”, and the following are
true:

- A and B are separated by a multiple of 64k in memory (i.e. they will occupy the same cache
frame)

- Bis currently located in cache

Then A will be registered as a “miss” and B will be registered as a “hit”. B will not be reloaded into cache,
and A will be executed twice. This condition is extremely rare because B has to be in cache memory, and
must be the next fetch packet requested after A (which is not in cache memory). Internal Reference
Number 4372.

WORKAROUND: The program should be re-linked to force A and B to not be a multiple of 64k apart.

© Texas Instruments 12 May, 1999 12

Redistribution or alteration not permitted.

TMS320C6201 Silicon Errata

Problem 2.1.13 EMIF: HOLD feature improvement on revision 3

This is documented as a difference between the 320C6201 revision 2.x (and earlier) and revision 3.0 (and
later).

The HOLD feature of the ‘C6201 currently will not respond to a HOLD request if the NOHOLD bit is set at
the time of the HOLD request, but is then cleared while the HOLD request is pending. In other words, for
a HOLD request to be recognized, a high to low transition must occur on the HOLD input while the
NOHOLD bit is not set. Future revisions of the device will operate as described below.

If NOHOLD is set and a HOLD request comes in, the C6x will ignore the HOLD request. If while the HOLD
request is still asserted the NOHOLD bit is then de-asserted, the HOLD will be acknowledged as
expected. Internal reference number 0101.

WORKAROUND: In order to recognize a pending HOLD request when the state of the NOHOLD bit is
changed from 1 to 0, a pulse must be generated on the input HOLD line. This can be done by logically
OR-ing a normally low general purpose output (DMAC can be used) with the HOLD request signal from
the requestor, and creating a high pulse on the general purpose output pin.

Problem 2.1.14 EMIF: HOLD request causes problems with SDRAM Refresh
If the HOLD interface is used in a system with SDRAM, there are some situations that are likely to occur.

If the NOHOLD bit is not set and an external requestor attempts to gain control of the bus via the HOLD
signal of the EMIF at the exact same time as the EMIF is issuing a SDRAM Refresh command, the HOLD
request is never recognized. Even if the NOHOLD bit is set in the EMIF Global Control Register, SDRAM
Refreshes are still disabled as long as the HOLD request is pending. A single Refresh after receiving the
HOLD request is issued, but no additional Refreshes are issued until the HOLD request is removed. The
C6x still owns the bus since the NOHOLD bit is set.

In addition, if an SDRAM burst is started just prior to a HOLD request, it is possible that the request will
not be recognized until a refresh occurs. This will potentially allow for the HOLD request to be ignored for
several micro-seconds. Internal reference number 0757 and 0777.

WORKAROUND: Do not allow a requestor to activate the HOLD line without acknowledging it for longer
than the SDRAM refresh period. A workaround can be accomplished by keeping the NOHOLD bit set and
software poll the HOLD bit of the EMIF Global Control Register. Software polling of the HOLD bit in the
EMIF Global Control Register will indicate when a HOLD request has been received (this can be done in
the SD_INT service routine or Timer interrupt service routine).

Upon detecting a HOLD request, SDRAM refreshes are disabled, NOHOLD bit is cleared, and a pulse is
generated on the input HOLD signal (can use DMACX as a general purpose output pin in combination with
the requestors HOLD signal). Then NOHOLD can be set and SDRAM refreshes enabled in anticipation of
the next HOLD request.

Problem 2.1.15 DMA Priority Bit Ignored by PBUS

The CPU always has priority over the DMA when accessing peripherals. The DMA PRI bit is ignored and
treated as “0”. Internal reference number 0540.

WORKAROUND: Leave sufficient gaps in CPU accesses to the PBUS to allow the DMA time to gain
adequate access.

Problem 2.1.16 DMA Split-Mode Receive Transfer Incomplete After Pause

If the DMA is performing a split-mode transfer and the channel is paused after all Transmit Reads in a
frame are completed but before the Receive Reads are completed, then the Receive Transfer will not
complete after the channel is restarted. Internal reference number 0606.

© Texas Instruments 12 May, 1999 13

Redistribution or alteration not permitted.

TMS320C6201 Silicon Errata

WORKAROUND: Do not pause a split-mode transfer at the end of a frame unless the frame has
completed.

Problem 2.1.17 DMA Multi-Frame Transfer Data Lost During Stop

If the DMA is stopped while performing an unsynchronized, multi-frame transfer, all of the read data may
not be written. The data will be written when the channel is restarted. This case will only occur when the
frame size (element count) is 10 or less and data elements from multiple frames are in the FIFO when it is
stopped. Internal reference number 0789.

WORKAROUND: Keep frame size > 10, synchronize the frame (FS = 1), or do not stop the transfer.

Problem 2.1.18 Bootload: HPI boot feature improvement on revision 3

This is documented as a difference between the TMX320C6201 revision 2.x (and earlier) and revision 3.0
(and later).

Currently during HPI boot, all accesses to program memory are treated as writes by the PMEMC. This
means that the host may not read the internal program memory space, as doing so will overwrite the
memory space, usually with all zeros. The PMEMC will be changed to differentiate between reads and
writes to program memory during boot. Internal reference number 0604.

Problem 2.1.19 PMEMC: Branch from external to internal

The program flow is corrupted after branching from external memory to internal program memory when
the following are true:

- CPU s executing from external memory

- A CPU stall occurs that holds the CPU until all pending program fetches complete. CPU stalls
may be caused by:

- External data access

- Multi-cycle NOPs

- Prolonged data memory bank conflict with DMA

- Multiple accesses to on-chip peripherals (not likely to cause this problem)

- A branch to internal program memory is taken before a new fetch packet is requested (i.e.
during the same fetch packet that is executed when the CPU stalls.

The CPU will branch correctly to the internal memory location and correctly execute the code located
there. When the branch is executed to return to external memory, the CPU will not complete the branch
properly and the program will crash. Internal reference number 0958

WORKAROUND: There are several workaround options, depending on the situation that causes the
failure. One or more of the following should be used to circumvent the problem:

- If the problem arises during an interrupt, move IST to external memory (same CE as code).

- If the problem occurs after a branch, delay the branch instruction with single-cycle NOPs or
extend the delay slots to span multiple fetch packets (i.e. follow the branch instruction with
parallel NOPs).

- If an external data access is causing the CPU stall, place data in internal data memory.
- If amulti-cycle NOP is causing the stall, change to multiple single-cycle NOPs.

- If stall is due to the CPU being starved, change the DMA priority to be lower than that of the
CPU.

© Texas Instruments 12 May, 1999 14

Redistribution or alteration not permitted.

TMS320C6201 Silicon Errata

Problem 2.1.21 DMA: DMA data block corrupted after start with zero transfer count

If DMA is stopped after it has been started with a zero transfer count, then reprogrammed and started
again, the first element of the block will be corrupted. Internal reference number 0242.

WORKAROUND: Make sure the transfer count is not near zero when starting the DMA.

© Texas Instruments 12 May, 1999 15

Redistribution or alteration not permitted.

TMS320C6201 Silicon Errata

REVISION 2.0 SILICON BUGS

Problem 2.0.1 Program Fetch: Cache Modes Not Functional

WORK-AROUND: Use internal program memory in mapped mode.

Problem 2.0.2 Bootload: Boot from 16-bit and 32-bit Asynchronous ROMs Not Functional

16-bit wide ROM mode and 32-bit wide asynchronous mode work in run time without bugs. The problem
is only in boot. . Internal Reference Number 3088.

WORK-AROUND: Place all code in the lowest byte of the boot ROM.

Problem 2.0.3 DMA Channel 0 Split Mode Combined with Auto-initialization Performs Improper Re-
Initialization

The source address (transmit read address) is reset too early when both split mode and auto-initialization
are enabled. The bug exists on DMA channel 0 only. Internal Reference Number 3481.

WORK-AROUND: Substitute one of the other channels for channel 0 when this configuration is desired.

Problem 2.0.4 DMA/Program Fetch: Cannot DMA into Program Memory when Running Program
From External

Performing a DMA transfer into program memory while running from off-chip can cause invalid program
data to read by the CPU. Internal Reference Number 2978.

WORK-AROUND: DMA into program memory only when running from internal program memory.

Problem 2.0.5 Data Access: Parallel Read and Write Accesses to Same EMIF or Internal Peripheral
Bus Location Sequenced Wrong

This bug occurs under the following conditions:
— Aload and store are in the same execute packet. And Either

— The addresses both point to off-chip memory through the EMIF, and the load has a destination
register in side A (thus the store would have a source register in side B). Or

— The addresses both point to the peripheral bus, and the load has a destination register in side B
(thus the store would have a source register in side A).

When these conditions occur, the store occurs first rather than the load. In general, this will only cause an
error if both the load and store addresses are the same. This bug DOES NOT occur if both accesses are
to internal data memory. Internal Reference Number 3087.

WORK-AROUND: Avoid loading and storing the same address on the same cycle.

Problem 2.0.7 EMIF: Reserved Fields Have Incorrect Values

Fields in Bits 15:14 of EMIF CE Space control registers are writeable. They should be read only and have
a 0 value. Bits 5:4 of EMIF SDRAM control register are 11b rather than 0. Internal Reference Number s
3248, 3283.

WORK AROUND: Mask these values if O's are expected and to only write Q's to reserved fields.

© Texas Instruments 12 May, 1999 16

Redistribution or alteration not permitted.

TMS320C6201 Silicon Errata

Problem 2.0.8 EMIF: SDRAM Refresh/DCAB Not Performed Prior to HOLD Request Being Granted

SDRAM is left in the current state when an external HOLD is granted. SDRAM refresh/DCAB is
necessary if an interface to a shared memory external SDRAM controller is desired. Internal Reference
Number 3249.

WORK-AROUND: Make sure the external controller performs a refresh/DCAB before performing SDRAM
accesses.

Problem 2.0.9 McBSP New Block Interrupt does not occur for Start of Block 0

When end-of-block interrupt is selected ((R/X)INTM=01b), does not occur at end of frame (i.e. before
block 0). Internal reference number 4357.

WORK-AROUND: This interrupt is used when on-the-fly channel selection/enabling is being performed. A
static channel selection/enabling avoids this.

Problem 2.0.11 DMA/Internal Data Memory: First load data corrupted when DMA in high priority

In the case of a single load from A side or B side followed by two loads in parallel from both sides, and in
concert with a DMA high priority access to the same bank as the parallel load, the DMEMC provides
corrupt data for that first load. Internal Reference Number 3858.

Example: LDW D1 *A3, Ad ; A4 gets corrupt data due to the bug
LDW .D2 *B3, B4
[|[LDW D1 *AB, A7

WORK-AROUND: Avoid high priority DMA transfers to/from internal data memory during these
conditions.

Problem 2.0.12 McBSP: FRST Improved in 2.1 over 2.0
The following enhancements were made in 2.1.

When /FRST transitions to a 1, the first frame sync is generated after 8 CLKG clocks. The 2.0
implementation was such that the first frame sync was generated after FPER+1 number of CLKG clocks.

/FRST=1 is valid only when /GRST=1. In other words the user has to set /[FRST=1 only after /GRST=1. If
not, write to /FRST=1 is ignored or rather a zero is forced on /FRST by the logic.

During normal operation, when /FRST=1 and /GRST=1, and now the user puts the sample rate generator
in reset (/GRST=0) without first clearing the /FRST bit to zero, then the logic will force a zero to /[FRST bit
before shutting down the sample rate generator.

Problem 2.0.13 McBSP: /XEMPTY stays low when DXR Written Late

/XEMPTY goes low and stays low when DXR was written on either the last bit or next to last bit of the
previous word being transferred to DX. Internal Reference Number 3383.

© Texas Instruments 12 May, 1999 17

Redistribution or alteration not permitted.

TMS320C6201 Silicon Errata

Problem 2.0.14 EMIF: Multiple SDRAM CE Spaces: Invalid access after refresh

This bug exists only in those systems that have SDRAMs in more than one CE space. When there are two
SDRAM accesses performed to two CE spaces, followed by a refresh, the pages in all CE spaces with
SDRAM are de-activated. The first CE space to be accessed after the refresh gets activated correctly. The
bug is that if the second CE space is accessed on the same page as before the refresh, it will not get
activated before the read or write is attempted. Internal Reference Number 3952,

WORKAROUND: Avoid use of multiple CE spaces of SDRAM within a single refresh period.

Problem 2.0.18 DMA/Internal Data Memory: conflict data corruption

This bug occurs when the CPU has high priority and is accessing a bank with word access (load or store)
followed by similar (load or store) halfword access, and the DMA is also accessing the same bank
simultaneously with word accesses:

Example: LDW D1 *A3, A4
LDH .D2 *A3, A5; A DMA to the bank containing never completes
; but the DMA continues as if it did

The data transfer done by the DMA is corrupted in halfwords (or rather not updated) when the DMA
transfer is complete. Internal Reference Number 4195.

WORKAROUND: When DMAIng to/from internal memory with DMA in low priority, use half-word or byte
element size transfers. Alternatively, avoid the above code sequence during DMA transfers.

Problem 2.0.19 EMIF: Data Setup Times

The data setup time for the external memory interface is listed in the February 21, 1998 Advanced
Information TMSX320C6201 Data Sheet as 2 ns, 3ns, and 2ns for Full Rate SBSRAM, % Rate SBSRAM,
and SDRAM respectively. In revision 2.0 of silicon, these values are to 4.8, 6.0, and 6.4ns respectively,
from worst-case simulation data (low voltage, high temperature, worst case process conditions.)

WORKAROUND: In room temperature operation we have not seen these setup times affect operation
except in the case of SDRAM where it may be limited to 80-95 MHz.

Problem 2.0.24 EMIF Extremely Rare Cases Cause an Improper Refresh Cycle to Occur.

If a trickle refresh is waiting for the EMIF, and the refresh timer counts down and makes the refresh urgent
JUST AS the EMIF grants the request, then CE is held low for only 1/2 SDCLK cycle during the deactivate
command before the refresh. This will result in an invalid deactivate command. Since the SDRAM did not
deactivate the open page, the next activate command following the refresh will not be executed by the
SDRAM. This will cause any subsequent accesses to go to the non-deactivated page. This will cause
corrupt data read and writes if the page to be opened after the refresh was not the same page that was
open before the refresh. Internal Reference Number 3453.

WORKAROUND: Increase the refresh period.

© Texas Instruments 12 May, 1999 18

Redistribution or alteration not permitted.

TMS320C6701 Silicon Errata

TMS320C6701 SILICON ERRATA

The following is a list of problems on TMS320C6701 silicon. Tl creates a hew document revision when a
new silicon bug is discovered. However, Tl does NOT update previously edited files. For example, if you
have silicon revision 0.0 and the latest silicon revision is 1.0, you should look at the latest silicon errata for
1.0, as it will also contain any problems found in silicon version 0.0.

Silicon revision is identified by a code in the lower left-hand corner of the chip. The code is of the format
Cxx-yyww. If xx=10, the silicon is revision 1. If no code is found, or if xx=00, the silicon is revision 0.

The Revision ID of the CPU (which is NOT the same as the silicon revision) can be found in the Revision
ID field of the Control Status Register (CSR). Please refer to the TMS320C62x/C67x CPU and Instruction
Set Reference Guide for details about the Control Status Register. The following table shows the silicon
revision and its CPU Revision ID:

Silicon Revision CPU Revision ID found in CSR

C6701 Revision 0.0 1

C6701 Revision 1.0 2

The CPU Revision ID only shows the revision of the CPU. Users should only refer to the silicon revision
number, and not the CPU Revision ID, when using this document.

Please also request the latest TMS320C6000 Peripherals Reference Guide and any Errata.
Note:
% New items in this document is
= Changes to the TMS320C6701 datasheet (SPRS067C)
= Problem 0.0.10 description is modified
% Problems in revision 0.0 silicon not fixed in revision 1.0 have been re-numbered as 1.0.x problems:
= Problem 0.0.16 is re-numbered as 1.0.1.
= Problem 0.0.17 is re-numbered as 1.0.2.

®,

+« All remaining 0.0.x problems are fixed on revision 1.0.

© Texas Instruments 18 January, 2000 1

Redistribution or alteration not permitted.

TMS320C6701 Silicon Errata

CHANGES 1O THE TMS320C6701 DATA SHEET (SPRS067C)

JTAG TEST-PORT TIMING (p. 71)

‘C6201,
NO. PARAMETER ‘C6201B UNIT
MIN MAX
1 Tc(TCK) Cycle time, TCK 50 ns
4 Th(TCKH-TDIV) Hold time, TDI/TMS/TRST valid after TCK high 9 ns
© Texas Instruments 18 January, 2000 2

Redistribution or alteration not permitted.

TMS320C6701 Silicon Errata

Figure 16. SBSRAM Read Timing (1/2 Rate SSCLK)*

SSCLK /N TN\ NN N

o1
ANEEAN

CE_

(I 2 A VA VA VA

Lz

[T

fe—3—|

BE1

BE_(30)

s]

ol 4
X BEZ X BE3 X BE
-6
R

EA212] Y AT X AZ X AT XA
8
o7
ED [31:0] Q1 X' Q2 X Q3 X Q4 >
fe—9— 10
SSADS_ \ /
je11- Le12
SSOE_ \ /
SSWE_

Figure 17. SBSRAM Write Timing (1/2 Rate SSCLK)*

SSCLK /" S S S L

fe—1— |—>|2
CE_ N\ L7
fe—3— {4
BE_[3:0] A} BET X_BE2_X_BE3 X BEA
|<—5J {6
EA21:2] AT XAZ X AT XA /G
fe13 {14
ED [31:0] &« Q1 X_Q2 X QB X4
fe—9— {10
SSADS_ \ /
SSOE_ ™
je-15— L»|16
SSWE_ \ /

* The /CEXx output setup and hold times are guaranteed to be accurate relative to the clock cycle to which
they are referenced, since these timings are specified as minimums. However, the CE output setup and
hold time may be greater than that shown in the datasheet in multiples of P ns. In other words, for output
setup time, the /CEx transition from high to low may happen P, 2P,..., or nP ns before the time specified
by the datasheet. Similarly, for output hold time, the /CEx low to high transition may happen P, 2P, ..., or
nP ns after the time specified by the datasheet. This is indicated by the period of uncertainty for specs 1

and 2 in Figure 16 and Figure 17 above.

© Texas Instruments

Redistribution or alteration not permitted.

18 January, 2000

TMS320C6701 Silicon Errata

List Of Bugs

Changes to the TMS320C6701 Data Sheet (SPRSOG7C)uuuuuuiuiriiirieiiieiierierereeesererrreereerereerrrrrreerrereeen 2
REVISION 1 SHICON BUGS ...ceiiitiieeiiitiie ettt ettt ettt e e sttt e e sttt e e e snbb e e e e sbeeeeaas teessbeeeessbeeeenns 5
Problem 1.0.1 EMIF: Invalid SDRAM access to last 1kByte of CE3.........cccccceeiiiiiiiiiiie e 5
Problem 1.0.2 Cache During Emulation with Extremely Slow External Memorycccceeviiiiieeeeeiicinnenn. 5
Problem 1.0.3 DMA: Split-Mode transfers corrupted if channel 1, 2, 3 are stopped........cccccccevvevvivreeeeennnee. 5
REVISION O SHICON BUGS ...ceiiiteiee ittt ettt ettt ettt sttt e e skt e e e sttt e e e sbb e e e s sbbeeeaas teessbeeeessbeeeenns 7
Problem 0.0.1 DATA MEMORY CONTROLLER: LDDW BUQccuvtiiiiieiiieniie e 7
Problem 0.0.2 Multi-cycle stalls during internal data memory bank conflicts..........ccccccooiiiiiii s 8
Problem 0.0.3 DMA: Transfer incomplete when pausing a Frame Synchronized transfer in mid-frame...... 8
Problem 0.0.4 DMA Multi-frame Split-Mode transfers source address indexing not functional.................... 9
Problem 0.0.5 DMA: Issues when pausing at a block boundary...........ccccccceeiiiiiiii e 9
Problem 0.0.6 DMA: Stopped transfer reprogrammed doesn’t wait fOr SYNC...........oooiciieiieriiiiiiieene e, 9
Problem 0.0.7 DMA freezes if post-increment/decrement across port boundaryccccccceevvvciieere e, 9
Problem 0.0.8 DMA paused during emulation halt ... e e 10
Problem 0.0.9 DMA: RSYNC=10000b (DSPINT) doesn’t wait fOr SYNC.........cccceovevvrreeieeeiiiiiiieeeee e 10
Problem 0.0.10 CPU: L-unit interprets some integer instructions as double precision floating point

LIS VT (o] o F O RSP RPR RSP PRSPPI 10
Problem 0.0.11 CPU: S-unit interprets some integer instructions as double precision floating point

1S VT (o] o F PSP R PRSPPI PRSPPI 11
Problem 0.0.12 CPU: MPYSP/MPYDP underflow failure ... 11
Problem 0.0.13 CPU: DPSP underflow failure............oooieoiiiiiiiiec e e 12
Problem 0.0.14 CPU: DPTRUNC/DPINT overflow failure ... 12

Problem 0.0.15 CPU: L-unit floating point instructions failed to execute after ADDDP/SUBDP re-execution13

© Texas Instruments 18 January, 2000 4

Redistribution or alteration not permitted.

TMS320C6701 Silicon Errata

REVISION 1 SILICON BUGS

Problem 1.0.1 EMIF: Invalid SDRAM access to last 1kByte of CE3

If 16 Mbytes of SDRAM (2 64 Mbit in a 1Mx16x4 organization) is used in CE3 then you can have invalid
accesses to the last 1kByte of CE3 (0xO3FFFCO00).

This occurs when the following is true:
« After a DCAB (Deactivate all pages) to all SDRAM CE spaces (forced by Refresh or MRS command)
» The first access to CE3 is to the last page of CE3 (0x03FFFCQ0).

Then a page activate will not be issued to CE3. Since the SDRAM in CE3 is in a deactivated state at that
point, invalid accesses will occur. Internal reference number C630280.

WORKAROUND:
Best Case: Avoid designing a board with a 64Mbit (1Mx16x4) SDRAM mapped into CE3.

Alternative: If a 64 Mbit SDRAM is located in CE3, avoid using the last 1kByte in the CE3 memory map
(OX03FFFCO00).

Problem 1.0.2 Cache During Emulation with Extremely Slow External Memory

If a program requests fetch packet “A” followed immediately by fetch packet “B”, and all of the following
four conditions are true:

1. A and B are separated by a multiple of 64k in memory (i.e. they will occupy the same cache frame)
2. Bis currently located in cache

3. You are using the emulator to single-step through the branch from A to B

4

The code is running off of an extremely slow external memory that transfers one 32-bit word every
8000+ CPU clock cycles (CPU running at 200 MHz)

Then A will be registered as a “miss” and B will be registered as a “hit". B will not be reloaded into cache,
and A will be executed twice. This condition is extremely rare because B has to be in cache memory, and
must be the next fetch packet requested after A (which is not in cache memory). In addition, this problem
only occurs if you single-step through the branch from A to B using the emulator, AND if the code is
located in an extremely slow external memory. Internal reference number C630283.

WORKAROUND:
» Do not single-step through the branch from A to B if the above conditions are true.

Do not use an extremely slow external memory (transfers one 32-bit word every 8000+ CPU clock
cycles) if conditions 1, 2, and 3 are true.

Problem 1.0.3 DMA: Split-Mode transfers corrupted if channel 1, 2, 3 are stopped

There is a problem with stopping DMA channel 1, 2, or 3 when operating in split-mode transfers. If the
DMA split-mode receive and transmit transfers are not in sync with one another when the channel is
stopped, and then the same DMA channel is programmed for a new split-mode transfer, the new transfer
will execute correctly but may not terminate completely. This problem does not exist in channel O.
Internal reference number C621764.

WORKAROUND: Do not stop DMA channels 1, 2, and 3 when they are operating in split-mode.

Or manually force the number of elements received and transmitted transfers to be equal. Split-mode is
most commonly used with the on-chip McBSPs. In typical McBSP applications, the transmit data is two
elements ahead of the receive data. Therefore to stop the serial transfer do the following:

© Texas Instruments 18 January, 2000 5

Redistribution or alteration not permitted.

TMS320C6701 Silicon Errata

- Reset the McBSP to prevent additional sync events
- Set RSYNC_STAT twice for the DMA channel to force two receive transfers
- Stop the DMA channel

In order to ensure that the same number of elements are transferred, the source and destination
addresses can be checked.

© Texas Instruments 18 January, 2000 6

Redistribution or alteration not permitted.

TMS320C6701 Silicon Errata

REVISION O SILICON BUGS

Problem 0.0.1 DATA MEMORY CONTROLLER: LDDW Bug

LDDW from external data memory (any CE space) fetches only the lower 32 bits instead of 64 bits.
However, LDDW from internal data memory works correctly and fetches the full 64-bit data, except for any
one of the following cases listed below, in which LDDW from internal data memory incorrectly fetches only
the lower 32 bits instead of 64 bits:

(1) Code sequence causes

Two successive execution packets with either one of the following patterns can cause the LDDW error:

Packet A-Side Instruction B-Side Instruction Comments

1 LDDW Any store instruction Internal data memory bank conflict
2 Any load instruction Any store instruction Internal data memory bank conflict
OR

Packet A-Side Instruction B-Side Instruction Comments

1 Any load/store LDDW Internal data memory bank conflict
2 Any load/store Any load Internal data memory bank conflict

Both of the above code sequences cause the LDDW instruction to return corrupted data.
(2) Step mode causes

Stepping through any code sequence that contains an LDDW instruction will cause the internal LDDW
error.

(3) DMA causes

If a DMA access causes an internal data memory bank conflict with another load or store instruction in the
same execute packet with an LDDW instruction, the LDDW instruction will return only the lower 32 bits of
data. This problem only occurs if DMA has priority, since the bug is caused by the CPU stalling. If the
CPU has priority, the CPU will not stall (unless you also have cause 1 or cause 2 happening). Internal
reference number 1, 3.

WORKAROUND: Do not use LDDW to fetch data from external memory. When using the compiler,
allocate all accessed data to internal data memory since there is no guarantee that the compiler will not
use the LDDW instruction. In addition, some of the Double Precision math library functions in rts6701.lib
and rts6701e.lib are found to use the LDDW instruction. In those cases try to use the equivalent single-
precision library function. For example, use "float logf(float x)" instead of "double log(double x)". When
using hand-coded or linear assembly code, if it is not possible to allocate data to internal data memory,
avoid using the LDDW instruction to access this data. LDB, LDH, and LDW can all be used instead.

In order to use LDDW from internal memory without failure, the user must ensure that the code pattern
outlined in (1) above is never generated (note that the data bank conflicts are required in this pattern for a
failure to occur).

Users may single-step code to debug, but DO NOT single step over the execution of an LDDW instruction
and all 5 of the cycles of latency of the LDDW instruction. Use a breakpoint after the 5-cycle latency to
resume single stepping of the program.

To use DMA in programs that use LDDW from internal memory, the user must ensure that the execute
packets that contain a LDDW instruction do NOT contain another load or store access, so that DMA
accesses will not cause internal data memory bank conflicts.

© Texas Instruments 18 January, 2000 7

Redistribution or alteration not permitted.

TMS320C6701 Silicon Errata

Problem 0.0.2 Multi-cycle stalls during internal data memory bank conflicts
Program flow will get corrupted data if ALL of the following are true:
- The program contains an execute packet with a B-side internal data load.

- This B-side internal data load is followed by an execute packet with a parallel load that
generates an internal data bank conflict (address bits 1, 2, 3, and 15 are the same between
the loads).

- AND a multi-cycle stall occurs during the execute of the parallel load packet.

The data for the first B-side load will be corrupted by the data for the second B-side load. The original B-
side load data will be lost.

Note in this description B-side refers to the destination register for the load, NOT the D-unit or address
register. Internal reference number 2.

WORKAROUND:

(1) Ensure the code does not contain any internal data bank conflicts (a brute-force method is to ensure
there are no execute packets with parallel loads)

(2) Ensure the code that includes parallel loads with internal data bank conflicts will not have any stalls
generated (due to external data fetches, external instruction fetches, high priority DMA activity, user
single-steps or breakpoints, or any other cause of a stall). In that case, only a single-cycle stall will occur
due to data bank conflicts. The program will work correctly.

Problem 0.0.3 DMA: Transfer incomplete when pausing a Frame Synchronized transfer in mid-
frame

If a frame-synchronized transfer is paused in mid-frame and then restarted again, a DMA channel does
not continue the transfer. Instead, the channel waits for synchronization. If the channel is manually
synchronized, it will properly complete the frame, but will immediately begin the transfer of the next frame
too. This behavior occurs for both a software pause (setting START = 10b) and for an emulation halt (with
EMOD =1). Internal reference number C601257.

WORKAROUND:
e If pausing the DMA channel in software, do the following to restart:

1. Setthe RSYNC bit in the Secondary Control Register.

2. Read the Transfer Count Register and then write back to Transfer Count Register. This would
enable the present frame to transferred but will wait for the next sync event to trigger the next
frame transfer.

3. Set START to 01b or 11b.

» If pausing the DMA channel with an emulation halt, do the following to restart:

1. Double-click on the Transfer Count Register and hit enter (rewrite current transfer count).

2. Set the RSYNC STAT bit in the Secondary Control Register (change OXXXXX4XXX to
OXXXXX1IXXX).

3. Run.

***Note that the order of 1 & 2 is critical for an emulator halt (EMOD = 1), but not for the software pause.

© Texas Instruments 18 January, 2000 8

Redistribution or alteration not permitted.

TMS320C6701 Silicon Errata

Problem 0.0.4 DMA Multi-frame Split-Mode transfers source address indexing not functional

If a DMA channel is configured to do a multi-frame split-mode transfer with SRC_DIR = Index (11b), the
source address is always modified using the Element Index, even during the last element transfer of a
frame. The transfer of the last element in a frame should index the source address using the Frame Index
instead of the Element Index. DST_DIR = 11b functions properly. Internal reference number C601256.

WORKAROUND: For multi-frame transfers, use two DMA channels instead of using the split-mode.
Source Index works properly for non-split-mode transfers.

Problem 0.0.5 DMA: Issues when pausing at a block boundary
The following problems exist when a DMA channel is paused at a block boundary:

 DMA doesn't flush internal FIFO when a channel is paused across block boundary. As a result, data
from old and new blocks of that channel are in FIFO simultaneously. This prevents other channels
from using the FIFO for high performance until that channel is restarted. Note that data is not lost
when that channel is started again. Internal reference number C601299.

» For DMA transfers with auto-initialization, if a channel is paused just as the last transfer in a block
completes (just as the transfer counter reaches zero), none of the register reloads take place (count,
source address, and destination address). When the same channel is restarted, the channel will not
transfer anything due to the zero transfer count. This problem only occurs at block boundaries.
Internal reference number C601258.

WORKAROUND: Do not pause across block boundary if the internal FIFO is to be used by other channels
for high performance. For DMA transfers with auto-initialization, if a channel is paused with a zero transfer
count, manually reload all registers before restarting the channel.

Problem 0.0.6 DMA: Stopped transfer reprogrammed doesn't wait for sync

If any non-synchronized transfer (ex: Auto-init Transfer) is stopped, and then the same channel is
programmed to do a Write Synchronized Transfer (ex: Split-mode transfer), the write transfer does not
wait for the Sync event. Internal reference number C601261.

WORKAROUND: Perform a non-synchronized dummy transfer of one element to/from the same location
before starting the synchronized transfer.

Problem 0.0.7 DMA freezes if post-increment/decrement across port boundary

For any DMA transfers with source/dest address post-increment/decrement, if the last element to be
transferred is aligned on a port boundary, then the DMA may freeze before transferring this element. A
port boundary is the address boundary between external memory and program memory, between external
memory and the peripheral address space, or between program memory and the peripheral address
space.

The following conditions cause DMA to freeze:

* For non-sync and frame-sync transfers: if a channel is paused after the second-to-last element is
read, when the channel is then restarted with a request to the address at a port boundary the DMA will
freeze.

e For split-mode transfers or read/write-sync transfers: the DMA will freeze while transferring the
element aligned on the port boundary. A continuous burst transfer with post-increment/decrement
source/dest address does not exhibit this problem. Internal reference number C601300.

WORKAROUND: Do not transfer to boundary addresses if the DMA source/dest address is post-
incremented/decremented.

© Texas Instruments 18 January, 2000 9

Redistribution or alteration not permitted.

TMS320C6701 Silicon Errata

Problem 0.0.8 DMA paused during emulation halt

When running an auto-initialized transfer, the DMA write state machine is halted during an emulation halt
regardless of the value of EMOD in the DMA Channel Primary Control Register. The read state machine
functions properly in this case. The problem exists only at block boundaries. If EMOD=1, this problem is
irrelevant since the DMA channel is expected to pause during an emulation halt. Internal reference
number C601301.

WORKAROUND: There is no workaround for EMOD=0. Expect DMA transfers to pause when the
emulator stops the processor.

Problem 0.0.9 DMA: RSYNC=10000b (DSPINT) doesn’t wait for sync

If RSYNC in the DMA Channel Primary Control Register is set to Host-port host to DSP interrupt (DSPINT
— 10000b), the DMA channel would do the read transfer without waiting for the sync event. There is not a
problem if WSYNC is set to DSPINT. Internal reference number C601302.

WORKAROUND: Do not synchronized DMA reads to DSPINT. If a DMA read is desired during a Host-
port host to DSP interrupt, set RSYNC in the Primary Control Register to one of the EXT_INT events
instead (EXT_INT4 — EXT_INT7) and have the host trigger an interrupt on that pin rather then by writing to
HPIC.

Problem 0.0.10 CPU: L-unit interprets some integer instructions as double precision floating point
instructions

The floating point .L unit incorrectly interprets an integer instruction as a double precision floating point
instruction. As a result, the .L unit fails to execute a floating-point instruction that follows. The following
set of .L unit integer instructions may result in a subsequent .L unit floating point instruction failing to
execute:

Integer .L unit Instruction Interpreted by Floating Point .L unit as
CMPGT (all opfields)t ADDDP / SUBDP
CMPGTU (all opfields)t ADDDP / SUBDP
SAT ADDDP / SUBDP

T Code can be written so that the CMPGT and CMPGTU opcodes are not obvious. CMPLT/CMPLTU and
CMPGT/CMPGTU are pseudo operations of each other, in the case when the operands are incorrectly arranged.
For example, for the piece of code below:

CMPLT .L1x B1,A0,A0 ; srcl should not use the cross path, pseudo-op will be substituted
CMPGT .L1x Al,8,A1 ; only srcl can be a constant, pseudo-op will be substituted

The assembler leaves the instructions above in the list file (.Ist), but performs the following operations instead:
CMPGT .L1x A0,B1,A0 ; only src2 uses the cross path
CMPLT .L1x 8,A1,A1 ; only srcl could be a constant

When determining which int/fp instruction scenarios will result in a floating point failure, treat the integer
instruction as if it were the floating point instruction specified in the table above and refer to Table 6-15 in
the TMS320C62x/C67x CPU and Instruction Set Reference Guide. When applying the rules of the hazard
table, note that it is only possible for a subsequent same-unit floating point instruction to fail.

An example failing code sequence is:

LDH .D1T1 *+A7(2),A5
|| CMPGT .L1 A4,A0,A4
Il SuB .L2X B0O,A5,B5
XOR S1 1,A4,A4
|| INTSP L2 B5,B4
Il INTSP L1 A5,A7 ; failing instruction

The failure occurs on INTSP.L1, because the .L1 FP unit is still busy executing the false ADDDP triggered
by the CMPGT.L1 executed in the previous cycle. Internal reference number 4.

© Texas Instruments 18 January, 2000 10

Redistribution or alteration not permitted.

TMS320C6701 Silicon Errata

WORKAROUND: For any code sequences with an integer CMPGT/CMPGTU/SAT in the first execute
packet and a floating point operation to the same .L unit in the second execute packet, ensure that if the
integer instruction were treated as an ADDDP/SUBDP instruction, the second execute packet would not
encounter any hazards as outlined in Table 6-15 of the TMS320C62x/C67x CPU and Instruction Set
Reference Guide.

Problem 0.0.11 CPU: S-unit interprets some integer instructions as double precision floating point
instructions

The .S unit instruction decode block incorrectly instructs the floating-point pipeline to perform a double
precision floating-point operation as the result of an integer instruction. A subsequent floating-point
instruction to the same .S unit then fails to execute. The following set of .S unit integer instructions may
cause a subsequent .S unit floating-point instruction to fail to execute:

SHR (opfields 110110 or 110100)
CLR (opfields 11 or 111111)
EXT (constant form or register form)

If the SHR/CLR/EXT instruction is not followed by any other non-SHR/CLR/EXT integer instruction to the
same .S unit, a subsequent floating-point instruction to the same .S unit may fail to execute. This applies
even if more than one execute packet exists between the SHR/CLR/EXT instruction and the floating-point
instruction.

An example failing code sequence is:

ADD L2 4, B5, B5
[[A2] STW .D2T2 B6,*B3
[I[[A1l] SuB .D1 Al, 1, Al
Il SHR S1 A6, 14, A8

NOP 1

ADD L2 B9, B4, B4
Il MPYU M1 A8, A3, A8

ADDSP L1 A4, A5, A5
Il CMPLTSP S1 A5, A9, A2 ; failing instruction
Il LDW DIT1 *++A0,A9
Il SHR .S2 B4, 14, B8

The failure occurs on CMPLTSP.S1, because the .S1 FP unit is still busy executing the false floating point
instruction triggered by the SHR.L1 executed previously. Internal reference number 5.

WORKAROUND: Ensure that the above three forms of .S unit integer operations (SHR, CLR, EXT) are
followed by any other .S unit integer operation BEFORE executing an .S unit floating-point operation on
that particular .S unit. Note that a NOP instruction does not count as a non-SHR/CLR/EXT instruction.

Problem 0.0.12 CPU: MPYSP/MPYDP underflow failure

In some cases the floating point .M unit produces an incorrect destination result for MPYSP and MPYDP
instructions which underflow.

If each of the following conditions is true, an MPYSP or MPYDP instruction may deliver an incorrect
destination result:

(1) The expected result of an MPYSP or MPYDP instruction underflows.
(2) The expected destination result is +/-SFPN.

The .M unit incorrectly produces an exponent equal to Emax instead of the expected Emin. The fraction,
sign, and UNDER status bits are correct. If the instruction underflows and should produce a destination
result of +/-0 instead of +/-SFPN, then the result produced is correct. Internal reference number 8.

WORKAROUND: Do not use MPYSP or MPYDP for numbers that may generate an underflow.

© Texas Instruments 18 January, 2000 11

Redistribution or alteration not permitted.

TMS320C6701 Silicon Errata

Problem 0.0.13 CPU: DPSP underflow failure

In some cases the floating point .L unit produces an incorrect result for DPSP instructions which
underflow. Internal reference number 6, 10.

CASE1: If each of the four following conditions is true, a DPSP instruction may deliver an incorrect
destination result and incorrect INEX and UNDER status bit (in the Floating-Point Multiplier Configuration
Register) results:

(1) the expected result underflows

(2) the intermediate result fraction is incremented due to rounding
(3) the pre-rounded intermediate result exponent is non-zero

(4) Rmode is not 01 (truncate)

An example code/data sequence that will generate this error is:

MVK 0x17373ff5, A8

MVKH 0x17373ff5, A8

MVK 0x2f35e46b, A9

MVKH 0x2f35e46b, A9

NOP

NOP

NOP

NOP

DPSP L1 A9:A8, A5 ;A5 = 39af2359 (should be 00000000)
NOP

CASE 2: If each of the four following conditions is true, a DPSP instruction will deliver an incorrect
destination result and incorrect UNDER and OVER status bit results:

(1) The expected result underflows.

(2) The intermediate result fraction is incremented due to rounding.

(3) Rounding causes a carry out of the incremented intermediate result fraction.

(4) The intermediate result exponent (calculated as the source operand’s biased exponent minus 0x380)
has a value of ‘1111111x’ (in binary).

The delivered result incorrectly reflects an overflow condition, and not an underflow condition as expected.

Example
Before instruction: Round mode = 0 (round toward nearest even integer)
A1:A0 = Qffffff ff800000
Failing instruction: DPSP A1:A0, A2
Incorrect result: A2 = 0x7f800000 with OVER and INEX

(Expected A2 = 0x00000000 with UNDER and INEX)

WORKAROUND: If conversion results may underflow, disable rounding mode by setting Rmode = 01
(truncate). Do not use DPSP if the above conditions are true.

Problem 0.0.14 CPU: DPTRUNC/DPINT overflow failure

In some cases the floating point .L unit produces an incorrect result for DPINT and DPTRUNC instructions
which overflow. Internal reference number 9.

If each of the three following conditions is true then a DPINT or DPTRUNC instruction may deliver an
incorrect destination result and incorrect INEX and OVER status bit results:

(1) The source operand has a negative sign.

(2) The source operand has a biased exponent equal to 1055 (0x41f) causing the expected result to
overflow.

(3) The intermediate result fraction is not rounded (DPTRUNC always meets this condition).

(4) Rmode=10 (round up) for DPINT instruction. This is irrelevant for DPTRUNC instruction.

© Texas Instruments 18 January, 2000 12

Redistribution or alteration not permitted.

TMS320C6701 Silicon Errata

Example 1

Before instruction: A1:A0 = Oxc1f232bf 7321a000

Failing instruction: DPTRUNC .L1 AL1:A0, A2

Incorrect result: A2 = 0xdcd408ce (should be A2 = 0x80000000)
Example 2

Before instruction: FADCR = 0x00000400

Al1:A0 = 0xcl1f4775a 6d3fc000
Failing instruction: DPINT .L1 Al1:A0, A2
Incorrect result: A2 = 0xb88a592d (should be A2 = 0x80000000)

WORKAROUND: Do not use DPINT or DPTRUNC if the above four conditions are true.

Problem 0.0.15 CPU: L-unit floating point instructions failed to execute after ADDDP/SUBDP re-
execution

The floating point .L unit incorrectly interprets an integer instruction and as a result re-executes a
preceding double precision floating point instruction, causing a subsequent floating point instruction to fail.

If the following sequence occurs:

(1) an ADDDP or SUBDP is executed on an .L unit.

(2) 2 execute packets later, any of the following integer .L unit instructions is executed in the SAME .L
unit: AND, OR, LMBD, NORM, CMPLT, SADD, CMPEQ, or ABS. (See “instr X" in the example
below.)

(3) 2 execute packets later after (2), a non-ADDDP/SUBDP floating point instruction is executed in the
SAME .L unit. (See “failing instruction” in the example below.)

Then the final floating point instruction will fail to execute correctly. An example of this failure is shown
below:

SUBDP .L1 A13:A12, A9:A8, A3:A2
NOP

AND L1 6, A8, A5 instr X
I STW D1 A2, *Al5++
I MV S2X A3,B3

AND L1 A9, A12, A6 Jinstr Y
I STW D1 A4, *Al5++
I MV .S2X A5, B5

Il STW .D2 B3, *B15++
SPINT .L1 A8, A4 ; failing instruction

In the above code sequence, instr X must be one of the previously defined eight integer .L unit instructions
for the failure to occur, instr Y can be any .L unit instruction. Any number of X/Y instr pairs can exist
between the SUBDP and SPINT. Internal reference number 7.

WORKAROUND: Insert an additional NOP between the SUBDP and instr X.

© Texas Instruments 18 January, 2000 13

Redistribution or alteration not permitted.

	Cover Page
	Table of Contents
	CHAPTER 1 Introduction
	A Note about this Manual

	CHAPTER 2 Installation
	Host Hardware Requirements
	Software Installation
	Begin Installation
	Installation Instructions
	JTAG Debugger Driver Installation
	TABLE 1. PCI Debugger Package Contents
	TABLE 2. ISA Debugger Package Contents

	Code Composer Studio Installation
	Hasp Key Installation
	End Of Installation

	Hardware Installation
	JTAG Emulator Hardware Installation
	FIGURE 1.� Pod Based Emulator Switch/Jumper Positions
	TABLE 3. Pod-Based Emulator Card I/O Address Switch Settings

	DSP Board Installation
	FIGURE 2.� Hasp Key

	Testing the Development Package Installation
	Configuring the Applets within the Development Package
	TABLE 4. Host Support Applications
	FIGURE 3.� .INI File Parameters

	Running the "JTAG Diagnostic" Utility
	Running an Example Program using TERMINAL
	Running the "Scope"
	Testing the Code Composer Debugger

	Troubleshooting Installation Problems
	Most Commonly Asked Questions
	Code Composer Studio Troubleshooting
	Verify Environment Variables

	Multiple Board Support
	Uninstall Process
	Windows 95/Windows 98 Uninstallation
	Windows NT Uninstallation

	CHAPTER 3 Integrated Development Environment
	The Texas Instruments C Compiler Toolset
	C Compiler Toolset Usage

	Code Composer Studio
	Editor
	Debugger

	CHAPTER 4 Support Applets
	The Terminal Emulator
	FIGURE 4.� Terminal Emulator Applet
	FIGURE 5.� Terminal Emulator File Menu
	FIGURE 6.� Diagnostic Received when Target DSP is Halted.
	FIGURE 7.� Terminal Emulator Plot Menu Dialog Box.
	FIGURE 8.� Terminal Emulator Window Menu

	The COFF File Downloader
	FIGURE 9.� The Coff File Downloader Applet

	The COFF File Dump Utility
	FIGURE 10.� The COFF Dump Utility
	FIGURE 11.� COFF Dump Utility Output.

	CHAPTER 5 Developing Target Code
	Introduction
	Components of Target Code (.c, .asm, .cmd)

	Edit-Compile-Test Cycle using Code Composer Studio
	A Simple Code Composer Studio Project
	FIGURE 12.� Creating a New Project in Code Composer Studio
	FIGURE 13.� Adding Files to a Code Composer Studio Project
	FIGURE 14.� Code Composer Studio Project Window.
	Build Options (M62, Q62, SBC62 Boards)
	FIGURE 15.� Code Composer Studio Compiler Build Options
	FIGURE 16.� Code Composer Studio Assembler Build Options
	FIGURE 17.� Code Composer Studio Linker Build Options
	FIGURE 18.� Code Composer Studio Build Results Window

	Build Options (M67, Q67, SBC67 Boards)
	FIGURE 19.� Code Composer Studio Compiler Build Options
	FIGURE 20.� Code Composer Studio Assembler Build Options
	FIGURE 21.� Code Composer Studio Linker Build Options
	FIGURE 22.� Code Composer Studio Build Results Window

	Automatic makefile creation
	Rebuilding a Project
	Running the Target Executable

	Anatomy of a Target Program
	Use of Library Code
	Compiling/Assembling/Linking Outside Code Composer Studio

	The Next Step: Developing Custom Code

	CHAPTER 6 Developing Host Code
	Dynamic Link Library
	Sample Host Programs
	The XRPT Example

	CHAPTER 7 Creating Target Software
	C Code Development
	C Compiler
	C Library Reference
	M62 Zuma Toolset Libraries
	TABLE 5. Zuma Toolset Source Directories
	TABLE 6. Zuma Toolset Support Subdirectories
	TABLE 7. Texas Instruments Standard Library Functions

	M62 Hardware Interaction
	TABLE 8. M62 External Peripheral Memory Map

	Digital Input/Output
	TABLE 9. Digital I/O Access Memory Location
	TABLE 10. Table 17: Digital I/O Direction Configuration
	TABLE 11. Digital I/O Latch Configuration
	TABLE 12. Digital I/O Library Functions

	Timers
	TABLE 13. C Language Timer Functions
	TABLE 14. STDIO Driver Functions

	Example Target Programs for the M62
	HELLO
	TEST

	CHAPTER 8 Target DSP Peripheral Libraries
	CHAPTER 9 Host DLL Reference
	TABLE 15. Generic DLL Function List

	CHAPTER 10 DOS Environment Requirements
	TABLE 16. Required disk directory structure for II development tools.

	CHAPTER 11 M62/cM62 Hardware
	M62/cM62 Hardware Functions
	FIGURE 23.� M62/cM62 Block Diagram

	Memory Map
	TABLE 17. M62 External Memory Map

	M62 Hardware Initialization Requirements
	TABLE 18. M62 Bus Control Register Initialization Values

	External Memory
	M62 OMNIBUS
	TABLE 19. M62 I/O Bus Memory Mapping
	M62 OMNIBUS Memory Mapping
	OMNIBUS Power
	TABLE 20. I/O Bus Power Ratings

	FIFOPort I/O Expansion
	FIGURE 24.� FIFOPort Block Diagram
	Transmitting and Receiving FIFOPort Data
	Monitoring FIFO Status
	FIGURE 25.� Receive FIFOPort Level Status Register
	TABLE 21. Receive FIFOPort Level Status Register Definition
	FIGURE 26.� Transmit FIFOPort Level Status Register

	TABLE 22. Transmit FIFOPort Level Status Register Definition

	FIFOPort Reset
	FIFOPort Enable
	Controlling the FIFOPort Programmable Almost-full Flag
	Timer I/O and the FIFOPort
	Designing External Hardware for use with the FIFOPort
	FIGURE 27.� FIFOPort Daughterboard Mechanical Dimensions

	FIFOPort Timing
	FIGURE 28.� FIFOPort Timing
	TABLE 23. FIFOPort Timing Parameters

	Serial Ports
	FIGURE 29.� Serial Port Daughterboard Mechanical Dimensions

	Timers
	On-chip Timers
	16-bit Timers
	TABLE 24. External Timer Control Registers

	AD9850 Direct Digital Synthesizer
	TABLE 25. AD9850 Control Registers

	Digital I/O
	TABLE 26. Digital I/O Control Registers
	Digital I/O Timing
	FIGURE 30.� Digital I/O Port Timing
	TABLE 27. Digital I/O Port Timing Parameters

	External Mux Control
	TABLE 28. TERM Function Memory Map

	Interrupts
	TABLE 29. External Interrupt Input Control Registers
	TABLE 30. Interrupt Source 4 and 5 Select Register Values
	TABLE 31. Interrupt Source 6 and 7 Select Register Values

	JTAG Test Bus
	M62 PCI Bus Features
	PCI Bus I/O and Memory Map
	TABLE 32. HPI Port PCI Bus Mapping

	M62 Bootstrapping

	CHAPTER 12 Appendices
	Board Layout
	Connector pinouts
	JP17, JP18, JP21, JP22, P1, P2 - OMNIBUS I/O Connectors (M62 only)
	TABLE 33. OMNIBUS I/O Connector Pinouts

	JP17, JP18, JP21, JP22, JP32, JP33 - OMNIBUS I/O Connectors (cM62 only)
	TABLE 34. OMNIBUS I/O Connector Pinouts
	FIGURE 31.� OMNIBUS I/O Connector Pin Configuration

	JP19, 20, 23, 24, 34, 35 - OMNIBUS Bus Connectors
	TABLE 35. I/O Module Bus Connectors
	TABLE 36. I/O Module Bus Connectors

	JP14 – Digital I/O Connector
	TABLE 37. Digital I/O Connector

	JP31 – Miscellaneous Digital I/O Connector
	TABLE 38. Miscellaneous Digital I/O Connector

	JP15, JP16 – Processor Serial Port Connectors
	TABLE 39. Processor Serial Port Connector

	JP11 – JTAG Debugger Connector
	TABLE 40. JTAG Debugger Connector

	JP30 – FIFOPort Connector
	TABLE 41. FIFOPort Connector

	TMS320C6201 Limitations and Errata
	Processor Speed Limitations and External Memory
	Texas Instruments Device Errata

